找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Knowledge Discovery in Databases: Research Track; European Conference, Danai Koutra,Claudia Plant,Francesco Bonchi Con

[復(fù)制鏈接]
樓主: 調(diào)停
31#
發(fā)表于 2025-3-26 21:09:47 | 只看該作者
Xugang Wu,Huijun Wu,Ruibo Wang,Duanyu Li,Xu Zhou,Kai Luxamples on M/G/1 queues, and a new section on G/M/1 queues. ?Additionally, there are two other important new sections: on the level-crossing derivation of the finite time-t probability distributions of excess, 978-3-319-84375-9978-3-319-50332-5Series ISSN 0884-8289 Series E-ISSN 2214-7934
32#
發(fā)表于 2025-3-27 05:08:52 | 只看該作者
Learning to?Augment Graph Structure for?both Homophily and?Heterophily Graphsion and label distribution information in the graph structure to further reduce the reliance on annotated labels and improve applicability to heterophily graphs. Extensive experiments have shown that L2A can produce truly encouraging results at various homophily levels compared with other leading me
33#
發(fā)表于 2025-3-27 07:39:53 | 只看該作者
Learning Representations for?Bipartite Graphs Using Multi-task Self-supervised Learningglobal information. We utilize deep multi-task learning (MTL) to further assist in learning generalizable self-supervised solution. To mitigate negative transfer when related and unrelated tasks are trained in MTL, we propose a novel DST++ algorithm. The proposed DST++ optimization algorithm improve
34#
發(fā)表于 2025-3-27 10:47:43 | 只看該作者
Multi-label Image Classification with Multi-scale Global-Local Semantic Graph Networkation between global information and local features in multi-scale features, which using the way of adaptive cross-fusion to locate the target area more accurately. Moreover, we propose the multi-perspective weighted cosine measure in multi-perspective dynamic semantic representation module to const
35#
發(fā)表于 2025-3-27 15:45:43 | 只看該作者
CasSampling: Exploring Efficient Cascade Graph Learning for?Popularity Predictionlobal propagation time flow. Then, we design an attention aggregator for node-level representation to better integrate local-level propagation into the global-level time flow. Experiments conducted on two benchmark datasets demonstrate that our method significantly outperforms the state-of-the-art m
36#
發(fā)表于 2025-3-27 21:01:39 | 只看該作者
Boosting Adaptive Graph Augmented MLPs via?Customized Knowledge Distillationhe guided knowledge to mitigate the adverse influence of heterophily to student MLPs. Then, we introduce an adaptive graph propagation approach to precompute aggregation feature for node considering both of homophily and heterophily to boost the student MLPs for learning graph information. Furthermo
37#
發(fā)表于 2025-3-28 01:57:27 | 只看該作者
ENGAGE: Explanation Guided Data Augmentation for?Graph Representation Learningof node importance in representation learning. Then, we design two data augmentation schemes on graphs for perturbing structural and feature information, respectively. We also provide justification for the proposed method in the framework of information theories. Experiments of both graph-level and
38#
發(fā)表于 2025-3-28 03:44:43 | 只看該作者
39#
發(fā)表于 2025-3-28 08:19:16 | 只看該作者
40#
發(fā)表于 2025-3-28 14:18:54 | 只看該作者
Train Your Own GNN Teacher: Graph-Aware Distillation on?Textual Graphsd the student models learn from each other to improve their overall performance. Experiments in eight node classification benchmarks in both transductive and inductive settings showcase . ’s superiority over existing distillation approaches for textual graphs. Our code and supplementary material are
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 23:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
正镶白旗| 农安县| 松桃| 商洛市| 乐平市| 布尔津县| 洛川县| 镇远县| 墨竹工卡县| 井冈山市| 邹平县| 南部县| 武冈市| 苏州市| 凌源市| 西贡区| 民权县| 顺义区| 习水县| 青阳县| 宝坻区| 江安县| 内丘县| 教育| 日喀则市| 浦北县| 涞源县| 凯里市| 大姚县| 彭泽县| 三门峡市| 视频| 溧阳市| 文登市| 禹州市| 清原| 宁城县| 河北区| 郑州市| 赞皇县| 广汉市|