找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Knowledge Discovery in Databases. Research Track and Demo Track; European Conference, Albert Bifet,Povilas Daniu?is,In

[復(fù)制鏈接]
樓主: 磨損
21#
發(fā)表于 2025-3-25 04:24:31 | 只看該作者
Tackling Oversmoothing in?GNN via?Graph SparsificationGNNs and pooling models, such as GIN, SAGPool, GMT, DiffPool, MinCutPool, HGP-SL, DMonPool, and AdamGNN. Extensive experiments on different real-world datasets show that our model significantly improves the performance of the baseline GNN models in the graph classification task.
22#
發(fā)表于 2025-3-25 08:46:46 | 只看該作者
Enhancing Shortest-Path Graph Kernels via?Graph Augmentationnted graphs, we employ the Wasserstein distance to track the changes. Our novel graph kernel is called the Augmented SP (ASP). We conduct experiments on various benchmark graph datasets to evaluate ASP’s performance, which outperforms the state-of-the-art graph kernels on most datasets.
23#
發(fā)表于 2025-3-25 12:52:49 | 只看該作者
Hyperbolic Contrastive Learning with?Model-Augmentation for?Knowledge-Aware Recommendationugmentation techniques to assist Hyperbolic contrastive learning. Different from the classical structure-level augmentation (e.g., edge dropping), the proposed model-augmentations can avoid preference shifts between the augmented positive pair. Finally, we conduct extensive experiments to demonstrat
24#
發(fā)表于 2025-3-25 16:15:17 | 只看該作者
25#
發(fā)表于 2025-3-25 20:04:45 | 只看該作者
Adaptive Knowledge Distillation for?Classification of?Hand Images Using Explainable Vision Transformresults demonstrate that ViT models significantly outperform traditional machine learning methods and the internal states of ViTs are useful for explaining the model outputs in the classification task. By averting catastrophic forgetting, our distillation methods achieve excellent performance on dat
26#
發(fā)表于 2025-3-26 04:08:08 | 只看該作者
27#
發(fā)表于 2025-3-26 06:32:37 | 只看該作者
Lifelong Hierarchical Topic Modeling via?Nonparametric Word Embedding Clusteringte that our method can generate a rational, flexible, and coherent topic structure. Lifelong learning evaluations also validate that our method is less influenced by catastrophic forgetting than baseline models. Our code is available at ..
28#
發(fā)表于 2025-3-26 08:45:44 | 只看該作者
29#
發(fā)表于 2025-3-26 16:40:46 | 只看該作者
30#
發(fā)表于 2025-3-26 17:08:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 00:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
青田县| 丹棱县| 定日县| 永丰县| 泰州市| 西平县| 泽普县| 景洪市| 万山特区| 仁寿县| 民乐县| 辉南县| 江都市| 宁明县| 岢岚县| 政和县| 阜新市| 阿克| 博客| 梨树县| 诏安县| 城口县| 大渡口区| 兰坪| 修水县| 分宜县| 西乌珠穆沁旗| 湖口县| 苏尼特右旗| 乐昌市| 四川省| 荥阳市| 盐亭县| 灵山县| 海口市| 渑池县| 鄱阳县| 阿荣旗| 民县| 惠东县| 温州市|