找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Knowledge Discovery in Databases. Research Track; European Conference, Nuria Oliver,Fernando Pérez-Cruz,Jose A. Lozano

[復(fù)制鏈接]
樓主: LH941
41#
發(fā)表于 2025-3-28 15:26:25 | 只看該作者
42#
發(fā)表于 2025-3-28 22:06:36 | 只看該作者
Model-Based Offline Policy Optimization with Distribution Correcting Regularizationon and offline data distribution via the DICE framework [.], and then regularizes the model-predicted rewards with the ratio for pessimistic policy learning. Extensive experiments show our DROP can achieve comparable or better performance compared to baselines on widely studied offline RL benchmarks.
43#
發(fā)表于 2025-3-28 23:05:46 | 只看該作者
44#
發(fā)表于 2025-3-29 05:41:21 | 只看該作者
Periodic Intra-ensemble Knowledge Distillation for Reinforcement Learningnment while periodically sharing knowledge amongst policies in the ensemble through knowledge distillation. Our experiments demonstrate that PIEKD improves upon a state-of-the-art RL method in sample efficiency on several challenging MuJoCo benchmark tasks. Additionally, we perform ablation studies to better understand PIEKD.
45#
發(fā)表于 2025-3-29 08:34:51 | 只看該作者
Ensemble and Auxiliary Tasks for Data-Efficient Deep Reinforcement Learningver, we derive a refined bias-variance-covariance decomposition to analyze the different ways of learning ensembles and using auxiliary tasks, and use the analysis to help provide some understanding of the case study. Our code is open source and available at ..
46#
發(fā)表于 2025-3-29 15:17:48 | 只看該作者
47#
發(fā)表于 2025-3-29 19:06:50 | 只看該作者
Conservative Online Convex Optimizationgret algorithm for online convex optimization into one that, at the same time, satisfies the conservativeness constraint and maintains the same regret order. Finally, we run an extensive experimental campaign, comparing and analyzing the performance of our meta-algorithm with that of state-of-the-art algorithms.
48#
發(fā)表于 2025-3-29 23:25:05 | 只看該作者
49#
發(fā)表于 2025-3-30 03:26:15 | 只看該作者
50#
發(fā)表于 2025-3-30 04:07:20 | 只看該作者
978-3-030-86485-9Springer Nature Switzerland AG 2021
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 22:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东丽区| 定结县| 麟游县| 赣州市| 临澧县| 永川市| 增城市| 衡阳县| 泗洪县| 屯门区| 肥乡县| 渭南市| 和林格尔县| 乐安县| 和顺县| 宣恩县| 英超| 灌阳县| 门头沟区| 措美县| 阜宁县| 雷山县| 阜城县| 永城市| 宣汉县| 手机| 衡水市| 深圳市| 保德县| 治县。| 罗田县| 玉溪市| 长治市| 兴隆县| 寿阳县| 白城市| 兴化市| 睢宁县| 九江市| 固始县| 临江市|