找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Knowledge Discovery in Databases; European Conference, Albert Bifet,Michael May,Myra Spiliopoulou Conference proceedin

[復(fù)制鏈接]
31#
發(fā)表于 2025-3-26 22:55:30 | 只看該作者
Logic-Based Incremental Process Miningthe ability to express/learn complex conditions on the involved tasks, are also desirable. First-order logic provides a single comprehensive and powerful framework for supporting all of the above. This paper presents a First-Order Logic incremental method for inferring process models. Its efficiency
32#
發(fā)表于 2025-3-27 02:24:18 | 只看該作者
Watch-It-Next: A Contextual TV Recommendation System program the device. We present an empirical evaluation of several recommendation methods over large-scale, real-life TV viewership data. Our extentions of common state-of-the-art recommendation methods, exploiting the current watching context, demonstrate a significant improvement in recommendation quality.
33#
發(fā)表于 2025-3-27 08:10:47 | 只看該作者
Discovering Neutrinos Through Data Analytics background ratio in the initial data (trigger level) is roughly 1:.. The overall process was embedded in a multi-fold cross-validation to control its performance. A subsequent regularized unfolding yields the sought after neutrino energy spectrum.
34#
發(fā)表于 2025-3-27 11:21:54 | 只看該作者
Clustering by Intent: A Semi-Supervised Method to Discover Relevant Clusters Incrementally we consistently get relevant results and at interactive time scales. This paper describes the method and demonstrates its superior ability using publicly available datasets. For automated evaluation, we devised a unique cluster evaluation framework to match the business user’s utility.
35#
發(fā)表于 2025-3-27 14:14:46 | 只看該作者
Learning Detector of Malicious Network Traffic from Weak Labels We demonstrate that an accurate detector can be obtained from the collected security intelligence data by using a Multiple Instance Learning algorithm tailored to the Neyman-Pearson problem. We provide a thorough experimental evaluation on a large corpus of network communications collected from various company network environments.
36#
發(fā)表于 2025-3-27 18:38:56 | 只看該作者
37#
發(fā)表于 2025-3-27 23:43:35 | 只看該作者
Robust Representation for Domain Adaptation in Network Securityved by relying on a self-similarity matrix computed for each bag. In our experiments, we will show that the representation is effective for training detector of malicious traffic in large corporate networks. Compared to the case without domain adaptation, the recall of the detector improves from 0.81 to 0.88 and precision from 0.998 to 0.999.
38#
發(fā)表于 2025-3-28 06:07:17 | 只看該作者
39#
發(fā)表于 2025-3-28 07:43:54 | 只看該作者
40#
發(fā)表于 2025-3-28 12:28:12 | 只看該作者
Data-Driven Exploration of Real-Time Geospatial Text Streamselevant information from irrelevant chatter using unsupervised and supervised methods alike. This allows the structuring of requested information as well as the incorporation of unexpected events into a common overview of the situation. A special focus is put on the interplay of algorithms, visualization, and interaction.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 12:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长汀县| 湾仔区| 银川市| 安仁县| 大足县| 西乌| 天柱县| 盖州市| 海宁市| 宝坻区| 武功县| 元谋县| 巴塘县| 吴川市| 珠海市| 固始县| 宁陵县| 汾西县| 大方县| 政和县| 吉木萨尔县| 黄梅县| 和林格尔县| 榆社县| 象州县| 东宁县| 沈阳市| 汝南县| 永昌县| 苍南县| 封开县| 古交市| 东山县| 达州市| 嵊州市| 郓城县| 广河县| 张家港市| 扎囊县| 乌海市| 雷州市|