找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Knowledge Discovery in Databases; European Conference, Toon Calders,Floriana Esposito,Rosa Meo Conference proceedings

[復(fù)制鏈接]
樓主: Gullet
31#
發(fā)表于 2025-3-26 21:23:27 | 只看該作者
32#
發(fā)表于 2025-3-27 04:10:54 | 只看該作者
33#
發(fā)表于 2025-3-27 05:50:52 | 只看該作者
34#
發(fā)表于 2025-3-27 10:50:24 | 只看該作者
35#
發(fā)表于 2025-3-27 16:20:58 | 只看該作者
Conference proceedings 2014ers, 10 nectar track papers, 8 PhD track papers, and 9 invited talks were carefully reviewed and selected from 550 submissions. The papers cover the latest high-quality interdisciplinary research results in all areas related to machine learning and knowledge discovery in databases.
36#
發(fā)表于 2025-3-27 21:51:20 | 只看該作者
0302-9743 edge Discovery in Databases: ECML PKDD 2014, held in Nancy, France, in September 2014. The 115 revised research papers presented together with 13 demo track papers, 10 nectar track papers, 8 PhD track papers, and 9 invited talks were carefully reviewed and selected from 550 submissions. The papers c
37#
發(fā)表于 2025-3-28 01:19:04 | 只看該作者
38#
發(fā)表于 2025-3-28 05:45:21 | 只看該作者
0302-9743 over the latest high-quality interdisciplinary research results in all areas related to machine learning and knowledge discovery in databases.978-3-662-44850-2978-3-662-44851-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
39#
發(fā)表于 2025-3-28 10:13:25 | 只看該作者
Conference proceedings 2014very in Databases: ECML PKDD 2014, held in Nancy, France, in September 2014. The 115 revised research papers presented together with 13 demo track papers, 10 nectar track papers, 8 PhD track papers, and 9 invited talks were carefully reviewed and selected from 550 submissions. The papers cover the l
40#
發(fā)表于 2025-3-28 11:23:27 | 只看該作者
Robust Distributed Training of Linear Classifiers Based on Divergence Minimization Principled. The goal of this distributed training is to utilize the data of all shards to obtain a well-performing linear classifier. The iterative parameter mixture (IPM) framework (Mann et al., 2009) is a state-of-the-art distributed learning framework that has a strong theoretical guarantee when the data
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 11:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
贞丰县| 云阳县| 银川市| 沙河市| 白朗县| 大足县| 吴川市| 大同县| 定襄县| 吴堡县| 伊春市| 贞丰县| 隆昌县| 自治县| 深水埗区| 古丈县| 太谷县| 交城县| 南开区| 潼关县| 西贡区| 尉氏县| 盐边县| 清苑县| 湖北省| 东安县| 浙江省| 濮阳市| 陇川县| 长泰县| 宜阳县| 南投县| 南康市| 鹤峰县| 句容市| 松阳县| 桑日县| 兴安盟| 桦川县| 新建县| 北流市|