找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Intelligent Communications; Third International Limin Meng,Yan Zhang Conference proceedings 2018 ICST Institute for C

[復制鏈接]
樓主: CAP
41#
發(fā)表于 2025-3-28 18:29:25 | 只看該作者
42#
發(fā)表于 2025-3-28 21:41:48 | 只看該作者
43#
發(fā)表于 2025-3-29 01:59:52 | 只看該作者
44#
發(fā)表于 2025-3-29 06:39:36 | 只看該作者
Real-Time Drone Detection Using Deep Learning Approachs in real time. In this paper, we design a real-time drone detector using deep learning approach. Specifically, we improve a well-performed deep learning model, i.e., You Only Look Once, by modifying its structure and tuning its parameters to better accommodate drone detection. Considering that a ro
45#
發(fā)表于 2025-3-29 08:00:08 | 只看該作者
Deep Reinforcement Learning-Based Task Offloading and Resource Allocation for Mobile Edge Computinguire a satisfactory task offloading and resource allocation decision for each user so as to minimize energy consumption and delay. In this paper, we propose a deep reinforcement learning-based approach to solve joint task offloading and resource allocation problems. Simulation results show that the
46#
發(fā)表于 2025-3-29 13:46:33 | 只看該作者
RFID Data-Driven Vehicle Speed Prediction Using Adaptive Kalman Filter First of all, when the vehicle moves through a RFID tag, the reader needs to acquire the state information (i.e., current speed and time stamp) of the last vehicle across the tag, and meanwhile transmits its state information to this tag. Then, the state space model can be formulated according to t
47#
發(fā)表于 2025-3-29 19:35:22 | 只看該作者
Speed Prediction of High Speed Mobile Vehicle Based on Extended Kalman Filter in RFID Systemrs. To this end, through using RFID (Radio Frequency Identification) data, this paper proposes a vehicle speed prediction algorithm based on Extended Kalman Filter (EKF). Specifically, the proposed algorithm works as follows. First, the RFID reader equipped in the vehicle acquires the state informat
48#
發(fā)表于 2025-3-29 19:46:59 | 只看該作者
49#
發(fā)表于 2025-3-30 01:00:53 | 只看該作者
50#
發(fā)表于 2025-3-30 06:09:28 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 08:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
辽宁省| 台南市| 平谷区| 额尔古纳市| 邹平县| 怀宁县| 双鸭山市| 武川县| 施甸县| 金乡县| 西华县| 嵊州市| 安顺市| 砀山县| 仁怀市| 象山县| 渝北区| 朝阳县| 邯郸县| 大荔县| 卢氏县| 鸡泽县| 华容县| 南涧| 庐江县| 巫溪县| 和平区| 句容市| 梧州市| 黔南| 广丰县| 武汉市| 科技| 东台市| 瑞丽市| 虹口区| 遂平县| 鄂托克前旗| 乌海市| 和田县| 永康市|