找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Flow Assurance in Oil and Gas Production; Bhajan Lal,Cornelius Borecho Bavoh,Jai Krishna Sah Book 2023 The Editor(s)

[復(fù)制鏈接]
樓主: 弄混
21#
發(fā)表于 2025-3-25 06:34:35 | 只看該作者
Machine Learning in Oil and Gas Industry,dels. Also, the use of machine learning in the oil and gas upstream is discussed with highlights on the recent advancement on the use of AI in the oil and gas industry. The challenges facing the application of machine learning in the oil and gas industry is also presented.
22#
發(fā)表于 2025-3-25 07:50:02 | 只看該作者
23#
發(fā)表于 2025-3-25 13:04:21 | 只看該作者
Machine Learning and Flow Assurance Issues,This chapter briefly discusses the main challenges facing the flow assurance related areas in the?oil and gas industry. It also provide simple fundamental definitions to machine learning vocabulary to introduce?to machine learning terms.
24#
發(fā)表于 2025-3-25 16:50:40 | 只看該作者
25#
發(fā)表于 2025-3-25 22:43:33 | 只看該作者
Machine Learning for Scale Deposition in Oil and Gas Industry,This chapter briefly discusses the type of machine learning methods used for scales precipitation in flow assurance. It also discussed the scale formation predictive models.
26#
發(fā)表于 2025-3-26 02:55:52 | 只看該作者
Machine Learning Application Guidelines in Flow Assurance,In this chapter guidelines for conducting an effective machine learning based prediction models in flow assurance areas is presented with much emphasis of data availability, data representation and model selection.
27#
發(fā)表于 2025-3-26 08:04:18 | 只看該作者
Machine Learning and Flow Assurance in Oil and Gas Production
28#
發(fā)表于 2025-3-26 08:44:20 | 只看該作者
29#
發(fā)表于 2025-3-26 13:44:10 | 只看該作者
pate, limit, and/or prevent flow assurance problems is recommended as the best and most suitable practice. The existing proposed flow assurance?models on hydrates, wax, asphaltenes, scale, and corrosion managem978-3-031-24233-5978-3-031-24231-1
30#
發(fā)表于 2025-3-26 17:18:41 | 只看該作者
Muhammad Saad Khan,Abinash Barooah,Bhajan Lal,Mohammad Azizur Rahman
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 14:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
金塔县| 长寿区| 兴安盟| 柞水县| 资源县| 金湖县| 怀仁县| 临沂市| 平顺县| 潞城市| 福鼎市| 温州市| 康马县| 浦东新区| 姚安县| 临武县| 道真| 临颍县| 龙井市| 达日县| 吐鲁番市| 桐柏县| 桂东县| 大英县| 田阳县| 轮台县| 石柱| 香河县| 方城县| 巴林左旗| 台东县| 喜德县| 揭东县| 和政县| 遵义市| 界首市| 绥芬河市| 成都市| 永寿县| 深圳市| 庄河市|