找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Data Mining in Pattern Recognition; 10th International C Petra Perner Conference proceedings 2014 Springer Internation

[復(fù)制鏈接]
樓主: 無緣無故
41#
發(fā)表于 2025-3-28 16:31:20 | 只看該作者
42#
發(fā)表于 2025-3-28 20:16:34 | 只看該作者
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/m/image/620467.jpg
43#
發(fā)表于 2025-3-29 00:38:05 | 只看該作者
A Cost-Sensitive Based Approach for Improving Associative Classification on Imbalanced Datasetsta. SSCR combines statistically significant association rules with cost-sensitive learning to build an associative classifier. Experimental results show that SSCR achieves best performance in terms of true positive rate and recall on real-world imbalanced datasets, compared with CBA and C4.5.
44#
發(fā)表于 2025-3-29 03:52:43 | 只看該作者
A Novel Approach for Identifying Banded Patterns in Zero-One Data Using Column and Row Banding Scoreut the need to consider large numbers of permutations. This mechanism has been incorporated into the Banded Pattern Mining (BPM) algorithm proposed in this paper. The operation of BPM is fully discussed. A Complete evaluation of the BPM algorithm is also presented clearly indicating the advantages o
45#
發(fā)表于 2025-3-29 08:58:03 | 只看該作者
ACCD: Associative Classification over Concept-Drifting Data Streamsthm over data streams), AUEH (Accuracy updated ensemble with Hoeffding tree) and VFDT(Very Fast Decision Trees) on 4 real-world data stream datasets, ACCD exhibits the best performance in terms of accuracy.
46#
發(fā)表于 2025-3-29 14:23:22 | 只看該作者
47#
發(fā)表于 2025-3-29 18:36:35 | 只看該作者
Monitoring Distributed Data Streams through Node Clusteringempt to collect together similar data items, monitoring requires clusters with . vectors canceling each other as much as possible. In particular, sub–clusters of a good cluster do not have to be good. This novel type of clustering dictated by the problem at hand requires development of new algorithm
48#
發(fā)表于 2025-3-29 19:55:02 | 只看該作者
49#
發(fā)表于 2025-3-30 02:19:28 | 只看該作者
50#
發(fā)表于 2025-3-30 04:21:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 16:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
兴海县| 济宁市| 临高县| 封开县| 合江县| 肃南| 崇信县| 武强县| 永川市| 田阳县| 临泽县| 长兴县| 嘉鱼县| 铁岭市| 湘乡市| 辽宁省| 德保县| 漠河县| 华容县| 万山特区| 当雄县| 赣榆县| 贵港市| 沙洋县| 平江县| 元江| 黔江区| 辉南县| 西青区| 渑池县| 黎城县| 梅州市| 固阳县| 夹江县| 滨州市| 玛纳斯县| 临夏市| 蚌埠市| 阿图什市| 富宁县| 任丘市|