找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Artificial Intelligence; Ameet V Joshi Book 20201st edition Springer Nature Switzerland AG 2020 Artificial Intelligen

[復(fù)制鏈接]
樓主: 天真無邪
31#
發(fā)表于 2025-3-26 21:09:00 | 只看該作者
Support Vector Machinesalternative to neural networks, when neural networks were not performing up to the grand expectations that they came with. SVM proposed a very targeted mathematical approach towards finding the optimal solution in case of classification or regression. We will first study the original SVM theory that
32#
發(fā)表于 2025-3-27 03:53:56 | 只看該作者
Probabilistic Models discriminative and generative models. In the discriminative models we will study the concepts of Bayesian approach and Maximum likelihood approach. We will derive the solution of a same problem using both approaches to illustrate the differences and advantages and disadvantages. Then we will study
33#
發(fā)表于 2025-3-27 05:39:51 | 只看該作者
Dynamic Programming and Reinforcement Learningr dive deep into its generalization. We will understand the class of problems that can be solved with the framework of dynamic programming. Then we will study reinforcement learning as one subcategory of dynamic programming in detail. We will study the concepts of exploration and exploitation and th
34#
發(fā)表于 2025-3-27 12:24:43 | 只看該作者
35#
發(fā)表于 2025-3-27 14:29:28 | 只看該作者
36#
發(fā)表于 2025-3-27 19:22:12 | 只看該作者
Deep Learninge become extremely popular tools in modern machine learning due to tremendous success they have achieved using the distributed and parallel computing technology available at disposal. We will study two specific types of deep networks in the form of convolutional neural networks (CNN) and recurrent n
37#
發(fā)表于 2025-3-27 22:42:07 | 只看該作者
Emerging Trends in Machine Learningto the existing techniques, while some of them may seem outright crazy and futuristic. Most of the techniques discussed here are in their infancy and need significant research efforts to mature. However, each one of these techniques represents an area of active research. Any of these techniques, if
38#
發(fā)表于 2025-3-28 05:12:50 | 只看該作者
39#
發(fā)表于 2025-3-28 07:46:12 | 只看該作者
40#
發(fā)表于 2025-3-28 11:30:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 10:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大足县| 天祝| 郓城县| 瓮安县| 土默特右旗| 宜兴市| 全州县| 昆山市| 龙里县| 秀山| 静安区| 商河县| 永平县| 定南县| 合肥市| 舞钢市| 赤峰市| 永安市| 灯塔市| 新竹县| 德州市| 固原市| 阿荣旗| 海林市| 全南县| 霍邱县| 溧水县| 扬中市| 宁化县| 鄂托克旗| 新丰县| 延边| 深水埗区| 承德市| 长乐市| 常德市| 彰武县| 朝阳区| 张掖市| 江口县| 贺兰县|