找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning Using R; With Time Series and Karthik Ramasubramanian,Abhishek Singh Book 2019Latest edition Karthik Ramasubramanian and A

[復(fù)制鏈接]
查看: 42396|回復(fù): 50
樓主
發(fā)表于 2025-3-21 17:35:06 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Machine Learning Using R
副標(biāo)題With Time Series and
編輯Karthik Ramasubramanian,Abhishek Singh
視頻videohttp://file.papertrans.cn/621/620430/620430.mp4
概述A comprehensive guide for anybody who wants to understand the machine learning model building process from end to end.Includes practical demonstrations of concepts in R.Covers deep-learning models wit
圖書封面Titlebook: Machine Learning Using R; With Time Series and Karthik Ramasubramanian,Abhishek Singh Book 2019Latest edition Karthik Ramasubramanian and A
描述.Examine the latest technological advancements in building a scalable machine-learning model with big data using R. This second edition shows you how to work with a machine-learning algorithm and use it to build a ML model from raw data. You will see how to use R programming with TensorFlow, thus avoiding the effort of learning Python if you are only comfortable with R..As in the first edition, the authors have kept the fine balance of theory and application of machine learning through various real-world use-cases which gives you a comprehensive collection of topics in machine learning. New chapters in this edition cover time series models and deep learning..What You‘ll Learn?.Understand machine learning algorithms using R.Master the process of building machine-learning models?.Cover the theoretical foundations of machine-learning algorithms.See industry focused real-world use cases.Tackle time series modeling in R.Apply deep learning using Keras and TensorFlow in R.Who This Book is For.Data scientists, data science professionals, and researchers in academia who want to understand the nuances of machine-learning approaches/algorithms in practice using R..
出版日期Book 2019Latest edition
關(guān)鍵詞Machine Learning; Data Exploration; Sampling Techniques; Data Visualization; Feature Engineering; Machine
版次2
doihttps://doi.org/10.1007/978-1-4842-4215-5
isbn_softcover978-1-4842-4214-8
isbn_ebook978-1-4842-4215-5
copyrightKarthik Ramasubramanian and Abhishek Singh 2019
The information of publication is updating

書目名稱Machine Learning Using R影響因子(影響力)




書目名稱Machine Learning Using R影響因子(影響力)學(xué)科排名




書目名稱Machine Learning Using R網(wǎng)絡(luò)公開度




書目名稱Machine Learning Using R網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning Using R被引頻次




書目名稱Machine Learning Using R被引頻次學(xué)科排名




書目名稱Machine Learning Using R年度引用




書目名稱Machine Learning Using R年度引用學(xué)科排名




書目名稱Machine Learning Using R讀者反饋




書目名稱Machine Learning Using R讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:00:13 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:31:12 | 只看該作者
Data Visualization in R, is the process of creating and studying the visual representation of data to bring some meaningful insights.
地板
發(fā)表于 2025-3-22 07:32:18 | 只看該作者
5#
發(fā)表于 2025-3-22 10:36:27 | 只看該作者
Karthik Ramasubramanian,Abhishek SinghA comprehensive guide for anybody who wants to understand the machine learning model building process from end to end.Includes practical demonstrations of concepts in R.Covers deep-learning models wit
6#
發(fā)表于 2025-3-22 13:57:32 | 只看該作者
7#
發(fā)表于 2025-3-22 20:59:40 | 只看該作者
Feature Engineering,ature engineering is a term coined to give due importance to the domain knowledge required to select sets of features for machine learning algorithms. It is one of the reasons that most of the machine learning professionals call it an informal process.
8#
發(fā)表于 2025-3-22 22:37:20 | 只看該作者
Machine Learning Model Evaluation,rmance and decide whether to go ahead with the model or revisit all our previous steps as described in the PEBE, our machine learning process flow, in Chapter .. In many cases, we may even discard the complete model based on the performance metrics. This phase of the PEBE plays a very critical role in the success of any ML-based project.
9#
發(fā)表于 2025-3-23 05:16:12 | 只看該作者
10#
發(fā)表于 2025-3-23 05:47:37 | 只看該作者
Time Series Modeling,t have high correlation with time and considerable part of the variance is due to changing times. The introduction to time series analysis will help you understand how to count time-dependent variations.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 14:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
崇左市| 武安市| 武隆县| 广东省| 蒙山县| 贵定县| 平顺县| 久治县| 绥中县| 石台县| 宁陵县| 岢岚县| 青铜峡市| 绥滨县| 邛崃市| 钟祥市| 阿巴嘎旗| 阿尔山市| 青川县| 嘉兴市| 吐鲁番市| 波密县| 北宁市| 石棉县| 博白县| 武功县| 涡阳县| 苍溪县| 大竹县| 年辖:市辖区| 百色市| 神木县| 静乐县| 达孜县| 锡林浩特市| 张家口市| 永宁县| 孝义市| 龙泉市| 砚山县| 阿图什市|