找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning Applications in Electronic Design Automation; Haoxing Ren,Jiang Hu Book 2022 The Editor(s) (if applicable) and The Author

[復(fù)制鏈接]
樓主: affected
11#
發(fā)表于 2025-3-23 10:59:06 | 只看該作者
12#
發(fā)表于 2025-3-23 13:57:57 | 只看該作者
Machine Learning for Analog Circuit Sizingis also presented. We then review and analyze several recently proposed methods on analog sizing, highlighting the adoption of ML techniques. Finally, we summarize the challenges and opportunities in applying ML for analog circuit sizing problem.
13#
發(fā)表于 2025-3-23 18:29:40 | 只看該作者
Net-Based Machine Learning-Aided Approaches for Timing and Crosstalk Predictionsive review of net-based ML-aided approaches for timing and crosstalk prediction. Then, four representative case studies are introduced in detail with the focus on problem formulation, prediction flow, feature engineering, and machine learning engines. Finally, a few conclusion remarks are given.
14#
發(fā)表于 2025-3-24 01:52:01 | 只看該作者
15#
發(fā)表于 2025-3-24 03:13:09 | 只看該作者
16#
發(fā)表于 2025-3-24 08:18:06 | 只看該作者
Machine Learning for Testability Predictioncal machine learning approaches for testability measurements, which focuses on a set of testability-related prediction problems in both component level and circuit level. In addition, several considerations on applying machine learning models for practical testability improvement are introduced.
17#
發(fā)表于 2025-3-24 11:30:19 | 只看該作者
RL for Placement and Partitioningn overview of deep RL, a primer on how to formulate chip placement as a deep RL problem, and a detailed description of a recent RL-based approach to chip placement. The chapter concludes with a discussion of other applications for RL-based methods and their implications for the future of chip design.
18#
發(fā)表于 2025-3-24 17:05:26 | 只看該作者
19#
發(fā)表于 2025-3-24 20:42:46 | 只看該作者
Machine Learning for Mask Synthesis and Verification using machine learning for mask synthesis and verification, including lithograph modeling, hotspot detection, mask optimization, and layout pattern generation. We hope this chapter can motivate future research on AI-assisted DFM solutions.
20#
發(fā)表于 2025-3-25 02:22:45 | 只看該作者
Machine Learning Applications in Electronic Design Automation
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 08:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阳城县| 柳河县| 遂溪县| 富蕴县| 沙田区| 九龙坡区| 铅山县| 鹿邑县| 武邑县| 巫山县| 桃园市| 增城市| 五台县| 嘉禾县| 中阳县| 晋宁县| 高阳县| 青州市| 亚东县| 卓资县| 昌图县| 新化县| 东兰县| 黄石市| 江口县| 久治县| 竹北市| 灌云县| 海丰县| 阜南县| 册亨县| 云龙县| 安龙县| 惠州市| 呈贡县| 罗源县| 柳江县| 莆田市| 祁连县| 玛沁县| 大邑县|