找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning; Modeling Data Locall Kaizhu Huang,Haiqin Yang,Michael Lyu Book 2008 Springer-Verlag Berlin Heidelberg 2008 ATSTC.Global l

[復(fù)制鏈接]
查看: 30874|回復(fù): 42
樓主
發(fā)表于 2025-3-21 17:13:25 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Machine Learning
副標(biāo)題Modeling Data Locall
編輯Kaizhu Huang,Haiqin Yang,Michael Lyu
視頻videohttp://file.papertrans.cn/621/620373/620373.mp4
概述New unified theory.Detailed graphic illustration.Empirical validation for each model
叢書(shū)名稱Advanced Topics in Science and Technology in China
圖書(shū)封面Titlebook: Machine Learning; Modeling Data Locall Kaizhu Huang,Haiqin Yang,Michael Lyu Book 2008 Springer-Verlag Berlin Heidelberg 2008 ATSTC.Global l
描述.Machine Learning - Modeling Data Locally and Globally presents a novel and unified theory that tries to seamlessly integrate different algorithms. Specifically, the book distinguishes the inner nature of machine learning algorithms as either "local learning"or "global learning."This theory not only connects previous machine learning methods, or serves as roadmap in various models, but – more importantly – it also motivates a theory that can learn from data both locally and globally. This would help the researchers gain a deeper insight and comprehensive understanding of the techniques in this field. The book reviews current topics,new theories and applications...Kaizhu Huang was a researcher at the Fujitsu Research and Development Center and is currently a research fellow in the Chinese University of Hong Kong. Haiqin Yang leads the image processing group at HiSilicon Technologies. Irwin King and Michael R. Lyu are professors at the Computer Science and Engineering departmentof the Chinese University of Hong Kong..
出版日期Book 2008
關(guān)鍵詞ATSTC; Global learning; Hybrid learning; Kernelization; Local learning; ZJUP; algorithms; computer science;
版次1
doihttps://doi.org/10.1007/978-3-540-79452-3
isbn_ebook978-3-540-79452-3Series ISSN 1995-6819 Series E-ISSN 1995-6827
issn_series 1995-6819
copyrightSpringer-Verlag Berlin Heidelberg 2008
The information of publication is updating

書(shū)目名稱Machine Learning影響因子(影響力)




書(shū)目名稱Machine Learning影響因子(影響力)學(xué)科排名




書(shū)目名稱Machine Learning網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Machine Learning網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Machine Learning被引頻次




書(shū)目名稱Machine Learning被引頻次學(xué)科排名




書(shū)目名稱Machine Learning年度引用




書(shū)目名稱Machine Learning年度引用學(xué)科排名




書(shū)目名稱Machine Learning讀者反饋




書(shū)目名稱Machine Learning讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:32:15 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:58:03 | 只看該作者
地板
發(fā)表于 2025-3-22 06:07:26 | 只看該作者
5#
發(fā)表于 2025-3-22 12:40:02 | 只看該作者
6#
發(fā)表于 2025-3-22 15:52:47 | 只看該作者
https://doi.org/10.1007/978-3-540-79452-3ATSTC; Global learning; Hybrid learning; Kernelization; Local learning; ZJUP; algorithms; computer science;
7#
發(fā)表于 2025-3-22 18:21:50 | 只看該作者
Learning Locally and Globally: Maxi-Min Margin Machine,The proposed MEMPM model obtains the decision hyperplane by using only global information, e.g. the mean and covariance matrices. However, although these moments can be more reliably obtained than estimating the distribution, they may still be inaccurate in many cases, e.g. when the data are very sparse.
8#
發(fā)表于 2025-3-23 00:18:30 | 只看該作者
9#
發(fā)表于 2025-3-23 02:09:52 | 只看該作者
10#
發(fā)表于 2025-3-23 07:45:23 | 只看該作者
1995-6819 resents a novel and unified theory that tries to seamlessly integrate different algorithms. Specifically, the book distinguishes the inner nature of machine learning algorithms as either "local learning"or "global learning."This theory not only connects previous machine learning methods, or serves a
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 08:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鄄城县| 乌恰县| 西城区| 焦作市| 太和县| 达孜县| 额敏县| 西和县| 德惠市| 温宿县| 兴仁县| 宁城县| 安泽县| 泸水县| 满洲里市| 昆山市| 和静县| 肃宁县| 天全县| 元氏县| 岑溪市| 伊吾县| 肥城市| 南华县| 鲜城| 尉氏县| 临桂县| 万山特区| 盖州市| 菏泽市| 新田县| 中江县| 江达县| 大名县| 文登市| 肥乡县| 双柏县| 兴义市| 宜丰县| 双桥区| 荥经县|