找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Macdonald Polynomials; Commuting Family of Masatoshi Noumi Book 2023 The Editor(s) (if applicable) and The Author(s), under exclusive lice

[復(fù)制鏈接]
樓主: 雜技演員
11#
發(fā)表于 2025-3-23 12:25:43 | 只看該作者
,Self-duality, Pieri Formula and?Cauchy Formulas,s chapter, we explain how the Pieri formulas (multiplication formula by .) are obtained from the action of Macdonald–Ruijsenaars operators . through the self-duality. We also investigate the Cauchy formula and the dual Cauchy formula for Macdonald polynomials and the relevant kernel identities.
12#
發(fā)表于 2025-3-23 16:38:57 | 只看該作者
,Affine Hecke Algebra and?,-Dunkl Operators (Overview),e .. (For a more comprehensive exposition, see Macdonald [22].) We explain how the commuting family of Macdonald–Ruijsenaars operators arise naturally in the framework of affine Hecke algebras. We also show how the self-duality of Macdonald polynomials can be established by means of the Cherednik involution of the double affine Hecke algebra.
13#
發(fā)表于 2025-3-23 18:55:28 | 只看該作者
2197-1757 that are easily accessible to readers with a background in This book is a volume of the Springer Briefs in Mathematical Physics and serves as an introductory textbook on the theory of Macdonald polynomials. It is based on a series of online lectures given by the author at the Royal Institute of Tec
14#
發(fā)表于 2025-3-24 02:09:43 | 只看該作者
,Littlewood–Richardson Coefficients and?Branching Coefficients, types of coefficients are intimately related to each other through the Cauchy formula for Macdonald polynomials. We also present a commuting family of .-difference operators of row type for which Macdonald polynomials are joint eigenfunctions, and explain how they are related to the Pieri formula of row type.
15#
發(fā)表于 2025-3-24 03:48:46 | 只看該作者
Book 2023 is based on a series of online lectures given by the author at the Royal Institute of Technology (KTH), Stockholm, in February and March 2021..?.Macdonald polynomials are a class of symmetric orthogonal polynomials in many variables. They include important classes of special functions such as Schur
16#
發(fā)表于 2025-3-24 07:43:11 | 只看該作者
Book 2023ynomials are explained, such as orthogonality, evaluation formulas, and self-duality, with emphasis on the roles of commuting?.q.-difference operators. The author also explains how Macdonald polynomials are formulated in the framework of affine Hecke algebras and?.q.-Dunkl operators..
17#
發(fā)表于 2025-3-24 12:54:39 | 只看該作者
18#
發(fā)表于 2025-3-24 16:36:43 | 只看該作者
19#
發(fā)表于 2025-3-24 20:34:47 | 只看該作者
Schur Functions,e Schur functions, one by combinatorics of semi-standard tableaux, and the other in terms of ratios of Vandermonde-type determinants. Then we establish the equivalence of the two definitions by means of the Cauchy formula. It should be noted that the theory of Macdonald polynomials is modeled in man
20#
發(fā)表于 2025-3-25 02:11:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 20:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昭苏县| 楚雄市| 正镶白旗| 临澧县| 石楼县| 泰顺县| 云阳县| 双鸭山市| 文安县| 隆昌县| 凤城市| 岐山县| 林芝县| 岳阳市| 昌图县| 萨迦县| 中方县| 汤原县| 镇安县| 城口县| 紫阳县| 阜南县| 长乐市| 繁昌县| 宁远县| 镇坪县| 庄浪县| 上饶市| 札达县| 墨脱县| 赤水市| 甘德县| 赞皇县| 长葛市| 泸溪县| 和平县| 建水县| 南宫市| 太仆寺旗| 东港市| 乌兰浩特市|