找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: MR Spectroscopy of Pediatric Brain Disorders; Stefan Blüml,Ashok Panigrahy Book 2013 Springer Science+Business Media, LLC 2013

[復(fù)制鏈接]
樓主: 夾子
21#
發(fā)表于 2025-3-25 07:05:06 | 只看該作者
In this case, the biendomorphism ring Q of E is the right quotient ring of R, and E is isomorphic to the unique minimal right ideal of Q (35A). Semiprime Goldie rings can be similarly characterized. Employing a recent characterization of quasi-injective abelian groups by Fuchs, we can describe all t
22#
發(fā)表于 2025-3-25 09:42:19 | 只看該作者
In this case, the biendomorphism ring Q of E is the right quotient ring of R, and E is isomorphic to the unique minimal right ideal of Q (35A). Semiprime Goldie rings can be similarly characterized. Employing a recent characterization of quasi-injective abelian groups by Fuchs, we can describe all t
23#
發(fā)表于 2025-3-25 13:24:25 | 只看該作者
24#
發(fā)表于 2025-3-25 17:34:19 | 只看該作者
Stefan Blüml Ph.D.In this case, the biendomorphism ring Q of E is the right quotient ring of R, and E is isomorphic to the unique minimal right ideal of Q (35A). Semiprime Goldie rings can be similarly characterized. Employing a recent characterization of quasi-injective abelian groups by Fuchs, we can describe all t
25#
發(fā)表于 2025-3-25 20:00:13 | 只看該作者
26#
發(fā)表于 2025-3-26 00:13:20 | 只看該作者
27#
發(fā)表于 2025-3-26 06:20:55 | 只看該作者
28#
發(fā)表于 2025-3-26 10:15:09 | 只看該作者
Simrandip K. Gill,Ashok Panigrahy M.D.,Theodoros N. Arvanitis Ph.D.,Andrew C. Peet Ph.D., F.R.C.P.C.In this case, the biendomorphism ring Q of E is the right quotient ring of R, and E is isomorphic to the unique minimal right ideal of Q (35A). Semiprime Goldie rings can be similarly characterized. Employing a recent characterization of quasi-injective abelian groups by Fuchs, we can describe all t
29#
發(fā)表于 2025-3-26 13:58:26 | 只看該作者
30#
發(fā)表于 2025-3-26 18:06:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 01:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
集贤县| 富锦市| 南丹县| 洪洞县| 涞源县| 巴林右旗| 寿宁县| 日喀则市| 佛学| 洪泽县| 新密市| 中山市| 泽库县| 余江县| 梁河县| 灵璧县| 六盘水市| 福贡县| 罗田县| 明溪县| 乐都县| 从江县| 乌拉特中旗| 鹤壁市| 富蕴县| 友谊县| 苗栗县| 华宁县| 上思县| 县级市| 峡江县| 留坝县| 大同市| 虎林市| 桐城市| 额尔古纳市| 屯留县| 朝阳区| 通河县| 五常市| 霍邱县|