找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Logicism, Intuitionism, and Formalism; What Has Become of T Sten Lindstr?m,Erik Palmgren,Viggo Stoltenberg-Han Book 2009 Springer Science+B

[復制鏈接]
樓主: Taylor
21#
發(fā)表于 2025-3-25 03:47:06 | 只看該作者
Brouwer’s Approximate Fixed-Point Theorem is Equivalent to Brouwer’s Fan TheoremIn a weak system for intuitionistic analysis, one may prove, using the Fan Theorem as an additional axiom, that, for every continuous function ? from the unit square U to itself, for every positive rational e, there exists x in U such that |?(x) ? x| < e. Conversely, if this statement is taken as an additional axiom, the Fan Theorem follows.
22#
發(fā)表于 2025-3-25 07:38:19 | 只看該作者
23#
發(fā)表于 2025-3-25 14:27:59 | 只看該作者
24#
發(fā)表于 2025-3-25 18:12:13 | 只看該作者
25#
發(fā)表于 2025-3-25 23:11:44 | 只看該作者
Book 2009ber formal unentscheidbare S?tze der Principia Mathematica und verwandter Systeme I. can reasonably be called the classical period. It saw the development of three major foundational programmes: the logicism of Frege, Russell and Whitehead, the intuitionism of Brouwer, and Hilbert‘s formalist and pr
26#
發(fā)表于 2025-3-26 02:56:40 | 只看該作者
27#
發(fā)表于 2025-3-26 08:14:22 | 只看該作者
0166-6991 s of mathematics in a historical perspective.Analyses the cl.The period in the foundations of mathematics that started in 1879 with the publication of Frege‘s .Begriffsschrift .and ended in 1931 with G?del‘s .über formal unentscheidbare S?tze der Principia Mathematica und verwandter Systeme I. can r
28#
發(fā)表于 2025-3-26 12:09:07 | 只看該作者
29#
發(fā)表于 2025-3-26 15:16:48 | 只看該作者
30#
發(fā)表于 2025-3-26 17:37:27 | 只看該作者
Protocol Sentences for Lite Logicismtheoretical structure of the science goes far beyond the data. After this view is introduced and compared and contrasted with others, the question just what form the “protocol sentences” or reports of data are to take is examined.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 03:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
汝城县| 泰宁县| 鄂温| 东港市| 穆棱市| 涞水县| 河东区| 洪江市| 汉中市| 崇左市| 华阴市| 壶关县| 观塘区| 玉林市| 常熟市| 寿阳县| 岳池县| 开鲁县| 东兴市| 高要市| 莱阳市| 贵定县| 新野县| 忻州市| 宜章县| 拉萨市| 贵港市| 景洪市| 甘肃省| 兴仁县| 邹平县| 五峰| 海盐县| 扎囊县| 舒城县| 石屏县| 贡觉县| 筠连县| 观塘区| 新乐市| 河南省|