找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Logic, Rationality, and Interaction; 6th International Wo Alexandru Baltag,Jeremy Seligman,Tomoyuki Yamada Conference proceedings 2017 Spri

[復制鏈接]
樓主: Localized
41#
發(fā)表于 2025-3-28 16:46:14 | 只看該作者
42#
發(fā)表于 2025-3-28 21:46:40 | 只看該作者
Rational Coordination with no Communication or Conventionsly rational principles’ guiding the reasoning of rational players in such games and analyse which classes of coordination games can be solved by such players with no preplay communication or conventions. We observe that it is highly nontrivial to delineate a boundary between purely rational principl
43#
發(fā)表于 2025-3-28 23:04:37 | 只看該作者
44#
發(fā)表于 2025-3-29 06:36:29 | 只看該作者
Multi-Path vs. Single-Path Replies to Skepticismal authors have suggested different fallibilist theories of knowledge that reject the epistemic closure principle. Holliday [.], however, shows that almost all of them suffer from either the problem of containment or the problem of vacuous knowledge. Furthermore, Holliday [.] suggests that the falli
45#
發(fā)表于 2025-3-29 11:16:37 | 只看該作者
46#
發(fā)表于 2025-3-29 11:45:56 | 只看該作者
A Characterization Theorem for Trackable Updates in their level of precision, but also in how they evolve when the agents receive new data. The notion of tracking was introduced to describe the matching of information dynamics, or ‘updates’, on different structures..We expand on the topic of tracking, focusing on the example of plausibility and e
47#
發(fā)表于 2025-3-29 19:18:31 | 只看該作者
Convergence, Continuity and Recurrence in Dynamic Epistemic Logicgic satisfies the requirements for being a topological dynamical system thus interfacing discrete dynamic logics with continuous mappings of dynamical systems. The setting is based on a notion of logical convergence, demonstratively equivalent with convergence in Stone topology. Presented is a flexi
48#
發(fā)表于 2025-3-29 20:46:42 | 只看該作者
49#
發(fā)表于 2025-3-30 00:15:01 | 只看該作者
A Propositional Dynamic Logic for Instantial Neighborhood ModelsL and dynamic game logic. INL is a recently proposed modal logic, based on a richer extension of neighborhood semantics which permits both universal and existential quantification over individual neighborhoods. We show that a number of game constructors from game logic can be adapted to this setting
50#
發(fā)表于 2025-3-30 06:30:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 02:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
丹寨县| 株洲县| 阳城县| 马鞍山市| 铅山县| 天台县| 临江市| 崇阳县| 抚州市| 武定县| 海门市| 荥经县| 兴城市| 宜都市| 青田县| 屏东市| 彭州市| 金乡县| 滨州市| 嵩明县| 乐亭县| 德安县| 大方县| 嘉义市| 泗洪县| 东阿县| 阳谷县| 玉山县| 卢氏县| 安福县| 梓潼县| 乌恰县| 新巴尔虎左旗| 和政县| 宁晋县| 鄂伦春自治旗| 徐水县| 循化| 松原市| 汤阴县| 嘉荫县|