找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Logic, Language, Information, and Computation; 27th International W Alexandra Silva,Renata Wassermann,Ruy de Queiroz Conference proceedings

[復制鏈接]
樓主: Lactase
41#
發(fā)表于 2025-3-28 15:16:09 | 只看該作者
42#
發(fā)表于 2025-3-28 18:54:27 | 只看該作者
43#
發(fā)表于 2025-3-28 23:48:01 | 只看該作者
44#
發(fā)表于 2025-3-29 03:16:43 | 只看該作者
Games for Hybrid Logic,ybrid logic – an extension of modal logic that allows for explicit reference to worlds within the language. The main result is that the systematic search of winning strategies over all models can be finitized and thus reformulated as a proof system.
45#
發(fā)表于 2025-3-29 08:12:25 | 只看該作者
Verifying the Conversion into CNF in Dafny, correctness and termination is machine-checked using the Dafny language for both. The first approach is based on repeatedly applying a set of equivalences and is often presented in logic textbooks. The second approach is based on Tseitin’s transformation and is more efficient. We present the main i
46#
發(fā)表于 2025-3-29 13:52:45 | 只看該作者
47#
發(fā)表于 2025-3-29 15:56:47 | 只看該作者
Coherence via Focusing for Symmetric Skew Monoidal Categories,laws of left and right unitality and associativity are not required to be invertible, they are merely natural transformations with a specific orientation; (.) the structural law of symmetry is a natural isomorphism involving three objects rather than two. In this paper we study the structural proof
48#
發(fā)表于 2025-3-29 22:33:01 | 只看該作者
On the Subtle Nature of a Simple Logic of the Hide and Seek Game, to describe the winning condition of the seeker makes our logic undecidable. There are certain decidable fragments of first-order logic which behave in a similar fashion and we add a new modal variant to that class of logics. We also discuss the relative expressive power of the proposed logic in co
49#
發(fā)表于 2025-3-30 00:46:26 | 只看該作者
50#
發(fā)表于 2025-3-30 05:33:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 02:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
平乐县| 无为县| 新绛县| 绥芬河市| 临颍县| 陆川县| 凤庆县| 疏附县| 昌吉市| 正安县| 连州市| 邢台县| 和平区| 兴仁县| 孙吴县| 秦皇岛市| 乐亭县| 天门市| 登封市| 社会| 扬州市| 怀安县| 金堂县| 时尚| 濮阳市| 林州市| 沾益县| 如皋市| 仁布县| 清水河县| 林口县| 宝坻区| 云和县| 雷山县| 葫芦岛市| 新泰市| 博湖县| 娱乐| 易门县| 山西省| 冀州市|