找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Logic for Programming, Artificial Intelligence, and Reasoning; 15th International C Iliano Cervesato,Helmut Veith,Andrei Voronkov Conferenc

[復(fù)制鏈接]
樓主: 全體
11#
發(fā)表于 2025-3-23 10:54:10 | 只看該作者
Nominal Renaming Setsfinitely-supported atoms-renaming action; renamings can identify atoms, permutations cannot. We show that nominal renaming sets exhibit many of the useful qualities found in (permutative) nominal sets; an elementary sets-based presentation, inductive datatypes of syntax up to binding, cartesian clos
12#
發(fā)表于 2025-3-23 14:28:41 | 只看該作者
13#
發(fā)表于 2025-3-23 19:17:48 | 只看該作者
14#
發(fā)表于 2025-3-24 00:39:19 | 只看該作者
15#
發(fā)表于 2025-3-24 02:30:40 | 只看該作者
Recurrent Reachability Analysis in Regular Model Checkingt of states can be reached infinitely often from a given initial state in the given transition system. Under the condition that the transitive closure of the transition relation is regular, we show that the problem is decidable, and the set of all initial states satisfying the property is regular. M
16#
發(fā)表于 2025-3-24 08:28:39 | 只看該作者
Alternation Elimination by Complementation (Extended Abstract)ch constructions are of practical interest in finite-state model checking, since formulas of widely used linear-time temporal logics with future and past operators can directly be translated into alternating automata. We present a construction scheme that can be instantiated for different automata c
17#
發(fā)表于 2025-3-24 12:38:34 | 只看該作者
18#
發(fā)表于 2025-3-24 16:29:29 | 只看該作者
(LIA) - Model Evolution with Linear Integer Arithmetic Constraintsegers in current theorem provers is sometimes too weak for practical purposes. In this paper we propose a novel calculus for a large fragment of first-order logic modulo Linear Integer Arithmetic (LIA) that overcomes several limitations of existing theory reasoning approaches. The new calculus — bas
19#
發(fā)表于 2025-3-24 19:26:03 | 只看該作者
20#
發(fā)表于 2025-3-24 23:49:42 | 只看該作者
Joao Marques-Silva,Inês Lynce,Vasco Manquinhoen lie?. Kleist war mit diesem Portr?t nicht zufrieden. ?Es liegt etwas Sp?ttisches darin, das mir nicht gef?llt, ich wollte er [der Maler Peter Friedel] h?tte mich ehrlicher gemalt?, schreibt er am 9. April 1801 an Wilhelmine. Zu Unrecht, meines Erachtens. Friedel malte einerseits die melancholisch
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 05:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
英山县| 保亭| 始兴县| 邛崃市| 缙云县| 漯河市| 金阳县| 正镶白旗| 旌德县| 乐都县| 惠州市| 吴桥县| 武平县| 浦县| 平舆县| 淮安市| 安康市| 宁德市| 邳州市| 修水县| 二连浩特市| 石城县| 菏泽市| 荣成市| 翁源县| 连云港市| 当雄县| 庆阳市| 墨玉县| 明水县| 平阳县| 榆林市| 丽江市| 澎湖县| 喀什市| 古浪县| 雷山县| 芒康县| 礼泉县| 岐山县| 芦山县|