找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Logic and Its Applications; Third Indian Confere R. Ramanujam,Sundar Sarukkai Conference proceedings 2009 Springer-Verlag Berlin Heidelberg

[復(fù)制鏈接]
樓主: 分類
11#
發(fā)表于 2025-3-23 11:14:00 | 只看該作者
Machine Checking Proof Theory: An Application of Logic to Logic,Modern proof-assistants are now mature enough to formalise many aspects of mathematics. I outline some work we have done using the proof-assistant Isabelle to machine-check aspects of proof theory in general, and specifically the proof theory of provability logic GL.
12#
發(fā)表于 2025-3-23 15:53:20 | 只看該作者
13#
發(fā)表于 2025-3-23 19:53:44 | 只看該作者
Instantial Relevance in Polyadic Inductive Logic,We show that under the assumptions of Spectrum Exchangeability and Language Invariance the so called ., a principle of instantial relevance previously know for unary (i.e. classical) Carnapian Inductive Logic, also holds in Polyadic Inductive Logic.
14#
發(fā)表于 2025-3-23 22:54:32 | 只看該作者
A Unified Framework for Certificate and Compilation for QBF,We propose in this article a unified framework for certificate and compilation for QBF. We provide a search-based algorithm to compute a certificate for the validity of a QBF and a search-based algorithm to compile a valid QBF in our unified framework.
15#
發(fā)表于 2025-3-24 02:36:13 | 只看該作者
Towards Decidability of Conjugacy of Pairs and Triples,The equation .?=?. is called the conjugacy equation. Here ., . and . are languages over a finite alphabet. Given two sets . and ., we can ask “Does there exist a . which makes the conjugacy equation true?”. We answer this question partially in the case when one of them is a two element set and the other is a three element set.
16#
發(fā)表于 2025-3-24 07:14:59 | 只看該作者
https://doi.org/10.1007/978-3-540-92701-3LA; algorithms; analytic proof theory; artificial intelligence; automata; calculi; combinatorics; complexit
17#
發(fā)表于 2025-3-24 12:25:48 | 只看該作者
978-3-540-92700-6Springer-Verlag Berlin Heidelberg 2009
18#
發(fā)表于 2025-3-24 17:53:07 | 只看該作者
Logic and Its Applications978-3-540-92701-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
19#
發(fā)表于 2025-3-24 22:24:31 | 只看該作者
Extensive Questions,t to Olsson’s own. We conclude arguing that: (.) our solution makes the idea of ‘minimal change’ in questions and agendas clearer; (.) can be extended in ways the original theory was not, and may help better realize the aims this theory was proposed for; (.) unveils some limitations of the initial approach, yet opening a way to overcome them.
20#
發(fā)表于 2025-3-25 00:29:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 09:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
邹城市| 福清市| 灵寿县| 陆河县| 堆龙德庆县| 获嘉县| 万宁市| 金川县| 张家川| 宝应县| 乌海市| 丹凤县| 灵寿县| 澳门| 太原市| 靖宇县| 遵化市| 仁布县| 金堂县| 瑞金市| 容城县| 喜德县| 靖州| 平度市| 女性| 玉林市| 定兴县| 蓝田县| 璧山县| 延庆县| 仪征市| 手游| 华宁县| 霍州市| 无为县| 卓尼县| 呼伦贝尔市| 彰化县| 利辛县| 阳原县| 丰城市|