找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Locally Mixed Symmetric Spaces; Bruce Hunt Book 2021 Springer Nature Switzerland AG 2021 symmetric space.discrete.arithmetic.Lie group.fib

[復制鏈接]
樓主: Iodine
11#
發(fā)表于 2025-3-23 10:55:14 | 只看該作者
https://doi.org/10.1007/978-3-030-69804-1symmetric space; discrete; arithmetic; Lie group; fiber space; fiber bundle; arithmetic group; Shimura vari
12#
發(fā)表于 2025-3-23 15:59:17 | 只看該作者
Kuga Fiber Spaces,y symmetric spaces to the specific case of locally hermitian symmetric spaces. It has already been observed that the hermitian symmetric case permits much more precise results on its structure; in particular it allows making stronger contact with algebraic geometry.
13#
發(fā)表于 2025-3-23 20:27:40 | 只看該作者
14#
發(fā)表于 2025-3-24 00:53:34 | 只看該作者
Locally Mixed Symmetric Spaces978-3-030-69804-1Series ISSN 1439-7382 Series E-ISSN 2196-9922
15#
發(fā)表于 2025-3-24 04:55:38 | 只看該作者
Symmetric Spaces,The notion of symmetric space is a very classical topic in differential geometry, originally created by E. Cartan at the turn of the nineteenth century, and is fundamental to all that follows; this chapter introduces this notion with a certain amount of detail with special emphasis on examples.
16#
發(fā)表于 2025-3-24 07:29:08 | 只看該作者
17#
發(fā)表于 2025-3-24 14:03:08 | 只看該作者
Appendices,In the appendix, notations used throughout the book are introduced, and a few topics are sketched; in addition the section references provides a description of sources where details on these topics can be found, to assist the reader in locating results in the literature.
18#
發(fā)表于 2025-3-24 17:36:43 | 只看該作者
19#
發(fā)表于 2025-3-24 22:43:22 | 只看該作者
20#
發(fā)表于 2025-3-25 00:57:09 | 只看該作者
Locally Mixed Symmetric Spaces, entering, ., where . is a semisimple .-group such that . is a symmetric space of non-compact type for a maximal compact subgroup . and . is an arithmetic group, there is now a . defining the situation: ., where . is a faithful rational representation (not necessarily defined over .).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 04:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
马尔康县| 塔城市| 吕梁市| 滨州市| 太仆寺旗| 古田县| 武隆县| 象山县| 福鼎市| 绥棱县| 犍为县| 凤凰县| 石屏县| 虹口区| 长治县| 西安市| 黔西县| 城固县| 祁阳县| 沅陵县| 德钦县| 永平县| 马龙县| 延川县| 澄迈县| 洪泽县| 昌都县| 漾濞| 防城港市| 重庆市| 甘洛县| 徐闻县| 扶风县| 塘沽区| 枝江市| 甘泉县| 黑山县| 长春市| 正镶白旗| 寿宁县| 沂源县|