找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Local Homotopy Theory; John F. Jardine Book 2015 Springer-Verlag New York 2015 algebraic K-theory.higher category theory.homotopical algeb

[復(fù)制鏈接]
樓主: 淹沒(méi)
31#
發(fā)表于 2025-3-26 21:54:23 | 只看該作者
Introduction,plicial presheaves and simplicial sheaves, and its chain complex and stable homotopy theoretic variants. An overview of the logical flow of the theory is presented, in relation to its origins and applications in Algebraic Geometry, Algebraic K-theory, and Algebraic Topology.
32#
發(fā)表于 2025-3-27 02:50:03 | 只看該作者
33#
發(fā)表于 2025-3-27 07:03:03 | 只看該作者
Some Topos Theoryculus of coverings which generalizes the algebra of open covers of a topological space, and can exist in much more generality..The examples of most interest for us come from Algebraic Geometry, and include the Zariski, flat, étale and Nisnevich topologies..These are discussed here, along with the ba
34#
發(fā)表于 2025-3-27 11:29:52 | 只看該作者
Local Weak Equivalencescial presheaves which induces isomorphisms in all possible sheaves of homotopy groups. A local fibration is a map which has a suitably defined local right lifting property with respect to all inclusions of horns in simplices. It is fundamental result that a map is both a local weak equivalence and a
35#
發(fā)表于 2025-3-27 13:50:02 | 只看該作者
Local Model Structures injective model structures for both of these categories, and the Quillen equivalence between them..The projective local model structure for simplicial presheaves, and all model structures intermediate between it and the injective model structure, are constructed. A useful "solution set condition" m
36#
發(fā)表于 2025-3-27 19:17:37 | 只看該作者
Cocyclesn topological and algebraic settings, but the theory is much more general..The primary theorem, that one can recover morphisms in the homotopy category from path components in cocycle categories, applies to a large selection of model structures. This result is one of the most useful formal ideas in
37#
發(fā)表于 2025-3-28 00:59:00 | 只看該作者
Localization Theoriesion of the localization of the injective model structure on a simplicial presheaf category, which is a model structure in which the members of a set of cofibrations are formally inverted. Examples include the motivic model structure for the category of simplicial presheaves on the Nisnevich site of
38#
發(fā)表于 2025-3-28 02:33:52 | 只看該作者
39#
發(fā)表于 2025-3-28 10:06:44 | 只看該作者
Non-abelian Cohomologyids and presheaves of groupoids enriched in simplicial sets. The corresponding injective fibrant objects are stacks, .-stacks and higher stacks, respectively, and the fibrant model construction is a candidate for stack replacement in each case..Torsors, in all cases, can be defined by the local acyc
40#
發(fā)表于 2025-3-28 10:32:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 19:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泾川县| 古交市| 博乐市| 达日县| 府谷县| 遵化市| 博兴县| 策勒县| 五华县| 鹿邑县| 山阴县| 雅安市| 云南省| 曲水县| 临桂县| 应城市| 滨州市| 黑河市| 惠来县| 天祝| 焉耆| 依兰县| 吴旗县| 兴城市| 原平市| 三江| 晋中市| 临邑县| 五常市| 沅江市| 甘洛县| 大化| 衡阳县| 海兴县| 洛浦县| 兴仁县| 保山市| 九江县| 陈巴尔虎旗| 锡林浩特市| 建阳市|