找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

12345
返回列表
打印 上一主題 下一主題

Titlebook: Local Features in Natural Images via Singularity Theory; James Damon,Peter Giblin,Gareth Haslinger Book 2016 Springer International Publis

[復(fù)制鏈接]
樓主: palliative
41#
發(fā)表于 2025-3-28 15:11:22 | 只看該作者
42#
發(fā)表于 2025-3-28 18:45:15 | 只看該作者
43#
發(fā)表于 2025-3-29 02:53:26 | 只看該作者
Overviewwo general considerations are that the objects will either be surfaces with boundary edges (representing physical objects that are “thin surfaces”) or 3-dimensional objects whose boundary surfaces exhibit certain geometric features. We allow the surface features to be generic geometric features incl
44#
發(fā)表于 2025-3-29 04:40:49 | 只看該作者
Apparent Contours for Projections of Smooth Surfaces apparent contours resulting from viewer movement. Our approach to this will involve progressively adding more detailed structure to simpler situations. The starting point for this is the case where we have a single object whose boundary is a smooth surface . without geometric features. Hence, for t
45#
發(fā)表于 2025-3-29 10:32:44 | 只看該作者
46#
發(fā)表于 2025-3-29 12:46:05 | 只看該作者
Methods for Classification of Singularitiesrious equivalence groups by reducing to the induced actions of Lie groups on jet spaces. This involves using finite determinacy results and Mather’s geometric lemma for actions of Lie groups. This was considerably strengthened by the much improved order of determinacy results from the stronger metho
47#
發(fā)表于 2025-3-29 17:00:34 | 只看該作者
48#
發(fā)表于 2025-3-29 23:08:29 | 只看該作者
Stratifications of Generically Illuminated Surfaces with Geometric Features projection being stable for the interaction of the geometric features and the resulting shade/shadow curves. We carry this out by first using the abstract classification of stable germs at geometric feature points, and determining in Sect.?8.1 their distinct geometric realizations to obtain the cla
12345
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 03:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
潮州市| 五台县| 白朗县| 栖霞市| 南宫市| 顺平县| 陵川县| 天柱县| 瓮安县| 阜宁县| 繁峙县| 乐至县| 鱼台县| 射阳县| 西安市| 独山县| 晋城| 噶尔县| 汾西县| 勃利县| 乌什县| 上高县| 民丰县| 清远市| 天等县| 铅山县| 永宁县| 抚顺市| 灌南县| 洪泽县| 莱阳市| 安远县| 谢通门县| 沂源县| 灵川县| 武山县| 吉林省| 清流县| 泗水县| 岱山县| 许昌市|