找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Lobachevsky Geometry and Modern Nonlinear Problems; Andrey Popov Book 2014 Springer International Publishing Switzerland 2014 Tchebychev n

[復(fù)制鏈接]
樓主: 習(xí)慣
21#
發(fā)表于 2025-3-25 06:33:22 | 只看該作者
22#
發(fā)表于 2025-3-25 10:50:40 | 只看該作者
The problem of realizing the Lobachevsky geometry in Euclidean space,idean space. In particular, we give an exposition of Lobachevsky planimetry as the geometry of a two-dimensional Riemannian manifold of constant negative curvature.We describe the apparatus of fundamental systems of equations of the theory of surfaces in . and discuss specifics of its application to
23#
發(fā)表于 2025-3-25 13:22:48 | 只看該作者
The sine-Gordon equation: its geometry and applications of current interest,olic geometry) nonlinear equation that has wide applications in contemporary mathematical physics. A far-reaching fact that enables the realization of diverse approaches to the investigation of problems connected with the sine-Gordon equation is the intimate association of this equation with surface
24#
發(fā)表于 2025-3-25 16:31:31 | 只看該作者
Lobachevsky geometry and nonlinear equations of mathematical physics,rdinate nets on the Lobachevsky plane ..We introduce the class of Lobachevsky differential equations (.-class), which admit the aforementioned interpretation. The development of this geometric approach to nonlinear equations of contemporary mathematical physics enables us to apply in their study the
25#
發(fā)表于 2025-3-25 23:08:40 | 只看該作者
Non-Euclidean phase spaces. Discrete nets on the Lobachevsky plane and numerical integration algorirence methods for the numerical integration of differential equations. The first part of the chapter (§§ 5.1. and 5.2) is devoted to introducing the concept of ., which are nonlinear analogs (with nontrivial curvature) of the phase spaces of classical mechanics, statistical physics, and of the Minko
26#
發(fā)表于 2025-3-26 01:14:53 | 只看該作者
27#
發(fā)表于 2025-3-26 07:57:30 | 只看該作者
28#
發(fā)表于 2025-3-26 11:32:39 | 只看該作者
29#
發(fā)表于 2025-3-26 15:11:55 | 只看該作者
Foundations of Lobachevsky geometry: axiomatics, models, images in Euclidean space,erpretations, and investigation of surfaces of constant negative curvature. The discussion of these parts is carried out keeping in mind what is required for their application to problems of contemporary mathematical physics.
30#
發(fā)表于 2025-3-26 17:49:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 05:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
陇川县| 克东县| 延安市| 安康市| 天镇县| 沁源县| 巫溪县| 南丹县| 富蕴县| 江油市| 广水市| 德惠市| 岳普湖县| 木里| 十堰市| 萨迦县| 平武县| 廉江市| 增城市| 怀远县| 淄博市| 丰顺县| 舟曲县| 临安市| 思茅市| 隆昌县| 乌兰县| 健康| 咸丰县| 潞城市| 乌拉特中旗| 闵行区| 通渭县| 禄劝| 集安市| 南城县| 商河县| 津市市| 从江县| 延边| 延川县|