找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lipschitz Functions; ?tefan Cobza?,Radu Miculescu,Adriana Nicolae Book 2019 Springer Nature Switzerland AG 2019 Banach Spaces of Lipschitz

[復制鏈接]
樓主: Filament
31#
發(fā)表于 2025-3-26 21:04:11 | 只看該作者
32#
發(fā)表于 2025-3-27 02:01:46 | 只看該作者
developing model systems to aid our understanding of the complex activities of the individual plant. Soil chemists are examining the interactions between iron and various minerals and organic matter soil components in the root zone. Microbiologists are providing a crucial perspective on how the int
33#
發(fā)表于 2025-3-27 08:30:38 | 只看該作者
34#
發(fā)表于 2025-3-27 12:28:28 | 只看該作者
35#
發(fā)表于 2025-3-27 16:13:16 | 只看該作者
36#
發(fā)表于 2025-3-27 21:08:31 | 只看該作者
?tefan Cobza?,Radu Miculescu,Adriana Nicolae developing model systems to aid our understanding of the complex activities of the individual plant. Soil chemists are examining the interactions between iron and various minerals and organic matter soil components in the root zone. Microbiologists are providing a crucial perspective on how the int
37#
發(fā)表于 2025-3-28 01:52:28 | 只看該作者
38#
發(fā)表于 2025-3-28 05:38:09 | 只看該作者
Basic Facts Concerning Lipschitz Functions,tions (including a characterization in terms of Dini derivatives), and the possibility of gluing together Lipschitz functions. Applications are given to a sandwich type theorem, to Lipschitz selections for set-valued mappings and to the separability of the space .(.).
39#
發(fā)表于 2025-3-28 09:36:35 | 只看該作者
Approximations Involving Lipschitz Functions,of semi-continuous functions by continuous ones, based on McShane’s extension method, is also included. The chapter ends with a study of homotopy of Lipschitz functions and a brief presentation of Lipschitz manifolds.
40#
發(fā)表于 2025-3-28 12:00:23 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-7 12:14
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
鹤峰县| 九寨沟县| 隆回县| 松阳县| 武安市| 和顺县| 江油市| 松阳县| 永城市| 海林市| 大荔县| 陆良县| 喀喇| 台东县| 大邑县| 固镇县| 伊吾县| 宁津县| 连山| 马鞍山市| 建湖县| 宁南县| 闻喜县| 东宁县| 花垣县| 凤凰县| 伊金霍洛旗| 德化县| 舞阳县| 元谋县| 冕宁县| 鸡东县| 平度市| 彩票| 渝北区| 江孜县| 临颍县| 噶尔县| 牟定县| 德保县| 防城港市|