找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Liouville-Riemann-Roch Theorems on Abelian Coverings; Minh Kha,Peter Kuchment Book 2021 The Editor(s) (if applicable) and The Author(s), u

[復制鏈接]
樓主: Opulent
11#
發(fā)表于 2025-3-23 12:35:50 | 只看該作者
12#
發(fā)表于 2025-3-23 16:18:14 | 只看該作者
Minh Kha,Peter KuchmentThe first unified exposition of Liouville and Riemann–Roch type theorems for elliptic operators on abelian coverings.Gives a well-organized and self-contained exposition of the topic, including new re
13#
發(fā)表于 2025-3-23 21:28:13 | 只看該作者
Lecture Notes in Mathematicshttp://image.papertrans.cn/l/image/586827.jpg
14#
發(fā)表于 2025-3-24 02:03:42 | 只看該作者
The Main Results,, the Riemann-Roch type equalities cannot be achieved (counterexamples are shown), while inequalities still hold. These inequalities, however, can be applied, the same way the equalities are, for proving the existence of solutions of elliptic equations with prescribed zeros, poles, and growth at infinity.
15#
發(fā)表于 2025-3-24 05:00:05 | 只看該作者
16#
發(fā)表于 2025-3-24 10:00:51 | 只看該作者
Specific Examples of Liouville-Riemann-Roch Theorems,In this chapter, we look at some examples of applications of the results of Chap. .. These include in particular self-adjoint operators with non-degenerate spectral band edges, operators with Dirac points in dispersion relation, as well as some non-self-adjoint cases.
17#
發(fā)表于 2025-3-24 12:46:30 | 只看該作者
Auxiliary Statements and Proofs of Technical Lemmas,Here we collect a variety of technical auxiliary considerations and results used in, or related to the content of the main chapters of the book.
18#
發(fā)表于 2025-3-24 15:56:45 | 只看該作者
19#
發(fā)表于 2025-3-24 20:20:35 | 只看該作者
20#
發(fā)表于 2025-3-25 01:29:16 | 只看該作者
Gabriel Amaral,Mārcis Pinnis,Inguna Skadi?a,Odinaldo Rodrigues,Elena Simperlry material: .For the first time in limnofaunistic bibliography, the present taxonomic knowledge about the different clades of chelicerata having adapted to an aquatic or amphibious lifestyle along various evolutionary pathways is brought together in an overview for the Central-European fauna. A tot
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 12:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
镇远县| 金秀| 吴桥县| 民和| 遂昌县| 伊春市| 林周县| 克山县| 靖西县| 来安县| 民勤县| 塔河县| 滨州市| 巴中市| 共和县| 衡水市| 涿州市| 进贤县| 罗定市| 紫金县| 大化| 阳朔县| 敦煌市| 松溪县| 娄底市| 砀山县| 平顺县| 宁城县| 吉安市| 阿拉善盟| 鸡西市| 阿拉善左旗| 肥乡县| 广平县| 汉阴县| 礼泉县| 石阡县| 若尔盖县| 阿合奇县| 天台县| 建平县|