找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lineare Algebra; Ein Lehrbuch über di J?rg Liesen,Volker Mehrmann Textbook 20152nd edition Springer Fachmedien Wiesbaden 2015 Algebraische

[復(fù)制鏈接]
樓主: angiotensin-I
51#
發(fā)表于 2025-3-30 08:23:11 | 只看該作者
Lineare Gleichungssysteme,nearisierung einer nichtlinearen Gleichung. Die L?sung solcher Systeme ist daher ein zentrales Problem der Linearen Algebra, das wir in diesem Kapitel einführend behandeln wollen. Wir analysieren die L?sungsmengen von linearen Gleichungssystemen, charakterisieren mit Hilfe der im vorherigen Kapitel
52#
發(fā)表于 2025-3-30 12:57:08 | 只看該作者
53#
發(fā)表于 2025-3-30 19:07:20 | 只看該作者
54#
發(fā)表于 2025-3-30 21:33:19 | 只看該作者
Lineare Abbildungen,onen Addition und skalare Multiplikation ?vertr?glich“ sind. Hierbei handelt es sich um die linearen Abbildungen. Nach der Untersuchung ihrer wichtigsten Eigenschaften zeigen wir, dass im Fall von endlichdimensionalen Vektorr?umen jede lineare Abbildung durch eine Matrix dargestellt werden kann, sob
55#
發(fā)表于 2025-3-31 02:01:21 | 只看該作者
Linearformen und Bilinearformen,bst als einen eindimensionalen K-Vektorraum auffassen. Diese Abbildungen spielen unter anderem eine wichtige Rolle in der Analysis, der Funktionalanalysis und bei der L?sung von Differenzialgleichungen. Für uns bilden sie die Grundlage für weitere wichtige Entwicklungen. Ausgehend von den Bilinear-
56#
發(fā)表于 2025-3-31 07:22:10 | 只看該作者
57#
發(fā)表于 2025-3-31 13:13:03 | 只看該作者
58#
發(fā)表于 2025-3-31 16:40:57 | 只看該作者
Polynome und der Fundamentalsatz der Algebra,cht jedes Polynom über jedem K?rper in Linearfaktoren zerf?llt, stellt sich stellt sich die Frage, wann eine Matrix oder ein Endomorphismus Eigenwerte besitzt. Um diese Frage zu beantworten, besch?ftigen wir uns in diesem Kapitel im Detail mit Polynomen.
59#
發(fā)表于 2025-3-31 20:26:08 | 只看該作者
Matrix-Funktionen und Differenzialgleichungssysteme,n der Stochastik, der Kontrolltheorie, der Optimierung und vielen weiteren Gebieten der Mathematik und ihren Anwendungen auf. Nach der Definition von prim?ren Matrix-Funktionen und der Herleitung ihrer wichtigsten Eigenschaften betrachten wir die Matrix-Exponentialfunktion. Mit Hilfe dieser Funktion
60#
發(fā)表于 2025-3-31 23:04:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 09:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桃园县| 土默特左旗| 海南省| 乐安县| 澄城县| 莫力| 浦城县| 丰镇市| 五大连池市| 长汀县| 海阳市| 安国市| 沙湾县| 福清市| 喜德县| 沁阳市| 县级市| 阜新市| 财经| 南京市| 皮山县| 丰县| 大悟县| 通辽市| 襄城县| 沙雅县| 浦东新区| 梁平县| 容城县| 阿尔山市| 五华县| 泽普县| 景宁| 阿坝| 凌源市| 阜新市| 潜江市| 嵩明县| 汉沽区| 吴桥县| 安国市|