找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

1234567
返回列表
打印 上一主題 下一主題

Titlebook: Linear Operators and Matrices; The Peter Lancaster I. Gohberg,H. Langer Conference proceedings 2002 Springer Basel AG 2002 Operator theory

[復(fù)制鏈接]
樓主: HIV763
61#
發(fā)表于 2025-4-1 02:27:12 | 只看該作者
Invariant Subspaces of Infinite Dimensional Hamiltonians and Solutions of the Corresponding RiccatiWe consider an infinite dimensional algebraic Riccati equation which arises in systems theory. Using a dichotomy property of the corresponding Hamiltonian and results on invariant subspaces of operators in spaces with an indefinite inner product we show the existence of bounded and unbounded solutions of this Riccati equation.
62#
發(fā)表于 2025-4-1 06:10:57 | 只看該作者
63#
發(fā)表于 2025-4-1 12:35:33 | 只看該作者
Peter Lancaster, my Friend and Co-author,turn Heinz told us about the work of Peter, about his book on vibrations of systems and about his personality. He also brought the book to Odessa and Peter’s results were often quoted in the seminars and discussions, and very soon Peter became popular in Odessa.
64#
發(fā)表于 2025-4-1 17:05:04 | 只看該作者
Logarithmic Residues of Fredholm Operator Valued Functions and Sums of Finite Rank Projections,k bounded linear operators can be written as the left and right logarithmic residues of a single Fredholm operator valued function if and only if they belong to the same connected component, i.e., if and only if they are sums of finite rank projections having the same trace.
65#
發(fā)表于 2025-4-1 18:48:42 | 只看該作者
Finite Section Method for Difference Equations,e-variant and the time-invariant case are considered. For the time-invariant case the condition reduces to the requirement that two subspaces defined in terms of the equations should be complementary. The results obtained extend those derived earlier for linear ordinary differential equations.
66#
發(fā)表于 2025-4-2 02:37:27 | 只看該作者
67#
發(fā)表于 2025-4-2 04:07:56 | 只看該作者
0255-0156 by a group of participants to honour Peter Lancaster on the occasion of his 70th birthday with a volume in the series ‘Operator Theory: Advances and Applications‘. Friends and colleagues responded enthusiastically to this proposal and within a short time we put together the volume which is now prese
68#
發(fā)表于 2025-4-2 08:46:03 | 只看該作者
1234567
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 03:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
富锦市| 浦东新区| 静安区| 贡嘎县| 彰化市| 金川县| 乳山市| 弥渡县| 皮山县| 新兴县| 临江市| 梅河口市| 和硕县| 富顺县| 辽阳县| 皮山县| 太湖县| 扶绥县| 呼伦贝尔市| 吉安市| 千阳县| 上高县| 兴海县| 米林县| 长春市| 庆云县| 萨迦县| 九龙坡区| 肃宁县| 屏南县| 洞口县| 江川县| 台中市| 杭锦后旗| 平舆县| 元阳县| 阿勒泰市| 长泰县| 吉安市| 泰来县| 喜德县|