找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Linear Integral Equations; Rainer Kress Textbook 19891st edition Springer-Verlag Berlin Heidelberg 1989 Hilbert space.Integral calculus.In

[復(fù)制鏈接]
樓主: 類屬
51#
發(fā)表于 2025-3-30 08:33:16 | 只看該作者
52#
發(fā)表于 2025-3-30 14:53:20 | 只看該作者
Iterative Solution and Stability,lving linear systems obtained by discretizing operator equations based on the principal idea of the residual correction. In addition, at the end of this chapter we will briefly enter into the question of stability of the linear systems arising in the discretization of integral equations.
53#
發(fā)表于 2025-3-30 16:53:07 | 只看該作者
0066-5452 l beauty. This book will try to stimulate the reader to share this love with me. Having taught integral equations a number of times I felt a lack of a text which adequately combines theory, applications and numerical methods. Therefore, in this book I intend to cover each of these fields with the sa
54#
發(fā)表于 2025-3-30 23:56:21 | 只看該作者
55#
發(fā)表于 2025-3-31 03:25:11 | 只看該作者
Singular Integral Equations,tegral equations they will provide an application of the general idea of regularizing singular operators as described in Chapter 5. We assume that the reader is acquainted with the basic theory of complex functions.
56#
發(fā)表于 2025-3-31 05:49:24 | 只看該作者
The Heat Equation,ifferential equation. In this chapter we want to indicate the application of Volterra type integral equations for the solution of initial boundary value problems for the heat equation. Without loss of generality we assume the constant κ = 1.
57#
發(fā)表于 2025-3-31 11:35:18 | 只看該作者
58#
發(fā)表于 2025-3-31 14:53:25 | 只看該作者
Springer-Verlag Berlin Heidelberg 1989
59#
發(fā)表于 2025-3-31 18:18:32 | 只看該作者
60#
發(fā)表于 2025-3-31 23:56:11 | 只看該作者
Regularization in Dual Systems,strate that it is still possible to obtain results on the solvability of singular equations provided they can be regularized, that is, they can be transformed into equations of the second kind with a compact operator.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 05:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
固阳县| 江津市| 罗城| 华安县| 云林县| 延吉市| 灵宝市| 滕州市| 西华县| 霞浦县| 广平县| 习水县| 金山区| 哈密市| 岑溪市| 古交市| 百色市| 历史| 原阳县| 介休市| 英山县| 东兴市| 西充县| 大厂| 汉沽区| 都昌县| 铜川市| 巢湖市| 乡城县| 积石山| 临朐县| 来宾市| 澄迈县| 武陟县| 宜丰县| 绥化市| 彭泽县| 金华市| 信丰县| 西乌珠穆沁旗| 张掖市|