找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Equations and Group Theory from Riemann to Poincare; Jeremy Gray Book 19861st edition Birkh?user Boston 1986 ordinary differe

[復(fù)制鏈接]
樓主: 呻吟
11#
發(fā)表于 2025-3-23 11:29:11 | 只看該作者
12#
發(fā)表于 2025-3-23 15:19:06 | 只看該作者
13#
發(fā)表于 2025-3-23 21:56:30 | 只看該作者
Algebraic Solutions to a Differential Equation,n the 1870’s and 1880’s. First, Schwarz solved the problem for the hypergeometric equation. Then Fuchs solved it for the general second-order equation by reducing it to a problem in invariant theory and solving that problem by . means. Gordan later solved the invariant theory problem directly. But F
14#
發(fā)表于 2025-3-24 02:16:41 | 只看該作者
15#
發(fā)表于 2025-3-24 06:21:43 | 只看該作者
Some Algebraic Curves,erent guises as: the 28 bi-tangents to a quartic curve, the study of a Riemann surface of genus 3 and its group of automorphisms, and the reduction of the modular equation of degree 8. These studies, which began separately, were drawn together by Klein in 1878 and proved crucial to his discovery of
16#
發(fā)表于 2025-3-24 06:51:41 | 只看該作者
Automorphic Functions,phic functions. These developments brought together the theory of linear differential equations and the group-theoretic approach to the study of Riemann surfaces, so this account draws on all of the preceding material. It begins with a significant stage intermediate between the embryonic general the
17#
發(fā)表于 2025-3-24 13:42:36 | 只看該作者
https://doi.org/10.1007/978-1-4899-6672-8ordinary differential equations
18#
發(fā)表于 2025-3-24 17:31:37 | 只看該作者
http://image.papertrans.cn/l/image/586303.jpg
19#
發(fā)表于 2025-3-24 21:01:45 | 只看該作者
20#
發(fā)表于 2025-3-24 23:14:46 | 只看該作者
Overview: 978-1-4899-6672-8
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 15:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
锡林浩特市| 石林| 焉耆| 沁源县| 水富县| 吉隆县| 新宾| 平山县| 涿鹿县| 丹凤县| 清涧县| 兴业县| 安新县| 鹤壁市| 郎溪县| 奉节县| 临武县| 松溪县| 宝清县| 屏山县| 汕尾市| 枝江市| 镇雄县| 潜江市| 龙里县| 民乐县| 双江| 汕头市| 台北县| 六安市| 大姚县| 弥勒县| 栾城县| 凌源市| 长治市| 当涂县| 宣化县| 乐清市| 柳河县| 会泽县| 修文县|