找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Linear Chaos; Karl-G. Grosse-Erdmann,Alfred Peris Manguillot Textbook 2011 Springer-Verlag London Limited 2011 Chaos.Dynamical systems.Hyp

[復(fù)制鏈接]
樓主: chondrocyte
41#
發(fā)表于 2025-3-28 18:40:23 | 只看該作者
42#
發(fā)表于 2025-3-28 19:59:08 | 只看該作者
43#
發(fā)表于 2025-3-28 23:49:36 | 只看該作者
44#
發(fā)表于 2025-3-29 04:46:08 | 只看該作者
45#
發(fā)表于 2025-3-29 07:51:41 | 只看該作者
Hypercyclic and chaotic operatorsis shown that every hypercyclic operator possesses a dense subspace all of whose nonzero vectors are hypercyclic (the Herrero–Bourdon theorem), and that linear dynamics can be as complicated as nonlinear dynamics. We begin the chapter with an introduction to Fréchet spaces since they provide the setting for some important chaotic operators.
46#
發(fā)表于 2025-3-29 13:33:38 | 只看該作者
Connectedness arguments in linear dynamics that every multi-hypercyclic operator is hypercyclic, the León–Müller theorem that any unimodular multiple of a hypercyclic operator is hypercyclic, and the Conejero–Müller–Peris theorem that every operator in a hypercyclic semigroup is hypercyclic.
47#
發(fā)表于 2025-3-29 16:56:02 | 只看該作者
Existence of hypercyclic operatorse set of hypercyclic operators in two ways: it forms a dense set in the space of all operators when endowed with the strong operator topology; and it is shown that any linearly independent sequence of vectors appears as the orbit under a hypercyclic operator.
48#
發(fā)表于 2025-3-29 23:42:49 | 只看該作者
49#
發(fā)表于 2025-3-30 01:38:40 | 只看該作者
Hypercyclic subspacese existence of hypercyclic subspaces. The first proof provides an explicit construction via basic sequences, the second one relies on the study of left-multiplication operators. We also obtain conditions that prevent the existence of hypercyclic subspaces; as an application we show that Rolewicz’s operators do not have hypercyclic subspaces.
50#
發(fā)表于 2025-3-30 07:03:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 13:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
行唐县| 库尔勒市| 黎川县| 喀喇沁旗| 阿巴嘎旗| 崇明县| 鄂托克旗| 九江县| 定兴县| 边坝县| 和龙市| 雅江县| 五原县| 水城县| 竹山县| 万盛区| 新余市| 北川| 雅江县| 甘南县| 沙田区| 丽江市| 崇州市| 彭泽县| 三门峡市| 鄄城县| 曲靖市| 仪征市| 湄潭县| 永济市| 阳山县| 怀安县| 新乡县| 章丘市| 惠来县| 遂宁市| 隆化县| 浑源县| 霞浦县| 老河口市| 柞水县|