找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Line Graphs and Line Digraphs; Lowell W. Beineke,Jay S. Bagga Book 2021 Springer Nature Switzerland AG 2021 Line graphs.Line digraphs.Alge

[復(fù)制鏈接]
樓主: bradycardia
31#
發(fā)表于 2025-3-26 21:04:57 | 只看該作者
32#
發(fā)表于 2025-3-27 01:16:02 | 只看該作者
Iterated Line Digraphsne step, more interesting things can happen, one being that connectedness is not necessarily preserved. Another instance is that a digraph can be isomorphic to its second iterated line digraph but not to its first. In more general terms, there are digraphs for which, after a while, the sequence of i
33#
發(fā)表于 2025-3-27 06:24:36 | 只看該作者
Total Graphs and Total Digraphsrch into variations and generalizations of the subject. In this, the first of several chapters on such topics, instead of just the edges of a given graph becoming the vertices of a new graph, both the vertices and the edges of the original become vertices. The new graph is called the total graph of
34#
發(fā)表于 2025-3-27 12:36:17 | 只看該作者
Path Graphs and Path Digraphsthese vertices being given by their having a path of length 1 in common and their union being either a path or cycle of length 3. After proving some basic results, we turn to the characterization of path graphs, the main theorem being an analogue of Krausz’s partition characterization for line graph
35#
發(fā)表于 2025-3-27 16:40:57 | 只看該作者
Super Line Graphs and Super Line Digraphsf these vertices be adjacent if at least one of the edges in one set is adjacent in . to at least one of those in the other set. This new graph is called a line graph of index 2. Naturally, line graphs of index . are defined analogously, and they constitute the subject of this chapter and have the n
36#
發(fā)表于 2025-3-27 20:30:03 | 只看該作者
37#
發(fā)表于 2025-3-27 23:39:18 | 只看該作者
38#
發(fā)表于 2025-3-28 05:50:05 | 只看該作者
Lowell W. Beineke,Jay S. BaggaThe first monograph devoted exclusively to Line Graphs and Line Digraphs.Provides a comprehensive, historical and up-to-date reference on the subject.Covers line graphs and line digraphs from their or
39#
發(fā)表于 2025-3-28 07:20:23 | 只看該作者
40#
發(fā)表于 2025-3-28 13:02:39 | 只看該作者
Spectral Properties of Line Graphshs’s theorem which states that eigenvalues of the adjacency matrix of a line graph are never less than ?2. This feature pervades this chapter, culminating in a powerful theorem of Cameron, Goethals, Seidel, and Shult on root systems.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 09:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
合肥市| 通州市| 华池县| 红安县| 海林市| 东兰县| 平阴县| 调兵山市| 博客| 邵阳县| 宣武区| 安远县| 湟中县| 项城市| 霍邱县| 余姚市| 获嘉县| 聂荣县| 青冈县| 乌兰察布市| 博湖县| 洛浦县| 洪湖市| 民权县| 高邑县| 顺平县| 彭州市| 那坡县| 博客| 明星| 桐梓县| 成武县| 莱西市| 嘉定区| 江川县| 岚皋县| 平邑县| 无棣县| 威海市| 辉南县| 商洛市|