找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Limit Theorems for Stochastic Processes; Jean Jacod,Albert N. Shiryaev Book 19871st edition Springer-Verlag Berlin Heidelberg 1987 Marting

[復(fù)制鏈接]
樓主: Autonomous
21#
發(fā)表于 2025-3-25 06:08:14 | 只看該作者
Convergence to a Semimartingale,limit process . also is a semimartingale; not quite an arbitrary one, though: since the method is based here on convergence of martingales and on the relations between . and its characteristics, we need these characteristics to indeed characterize the distribution. ?(.)of . So, in most of the chapte
22#
發(fā)表于 2025-3-25 08:28:19 | 只看該作者
Hellinger Processes, Absolute Continuity and Singularity of Measures,years later, Hajek [80] and Feldman [53] proved a similar alternative for Gaussian measures, and several authors gave effective criteria in terms of the covariance functions or spectral quantities, for the laws of two Gaussian processes.
23#
發(fā)表于 2025-3-25 12:02:18 | 只看該作者
Martingale Problems and Changes of Measures,compute these finite-dimensional distributions, except for PII. On the other hand, many usual processes are semimartingales; and a natural tool has emerged in Chapter II for studying them, namely their characteristics: at least, they are often easy to compute.
24#
發(fā)表于 2025-3-25 16:28:21 | 只看該作者
Convergence of Processes with Independent Increments,firstly, the prelimiting processes, as well of course as the limiting process, have independent increments; secondly, only the limiting process has independent increments; thirdly, the limiting process itself belongs to some rather broad class of semi-martingales.
25#
發(fā)表于 2025-3-25 23:39:31 | 只看該作者
26#
發(fā)表于 2025-3-26 01:41:08 | 只看該作者
27#
發(fā)表于 2025-3-26 07:38:49 | 只看該作者
Book 19871st editionnd stochastic integrals. Apart from a few exceptions essentially concerning diffusion processes, it is only recently that the relation between the two theories has been thoroughly studied. The authors of this Grundlehren volume, two of the international leaders in the field, propose a systematic exp
28#
發(fā)表于 2025-3-26 10:56:43 | 只看該作者
29#
發(fā)表于 2025-3-26 16:31:37 | 只看該作者
30#
發(fā)表于 2025-3-26 17:49:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 05:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吉林省| 阳江市| 汝州市| 鹤壁市| 荔波县| 原阳县| 含山县| 隆安县| 辉南县| 庐江县| 宜良县| 凤山县| 邯郸市| 泽库县| 龙州县| 金秀| 安丘市| 日喀则市| 岳阳市| 共和县| 唐海县| 星子县| 海兴县| 那曲县| 方城县| 青田县| 邵阳县| 明星| 桦南县| 依兰县| 孝感市| 奉新县| 若尔盖县| 承德县| 牡丹江市| 屏山县| 鹤峰县| 陆良县| 宣恩县| 娄烦县| 仁寿县|