找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lie Groups, Geometry, and Representation Theory; A Tribute to the Lif Victor G. Kac,Vladimir L. Popov Book 2018 Springer Nature Switzerland

[復制鏈接]
樓主: 召集會議
11#
發(fā)表于 2025-3-23 11:51:55 | 只看該作者
12#
發(fā)表于 2025-3-23 14:15:14 | 只看該作者
13#
發(fā)表于 2025-3-23 20:12:55 | 只看該作者
Generalized Bruhat Cells and Completeness of Hamiltonian Flows of Kogan-Zelevinsky Integrable Systed to be Poisson, and they provide global coordinates on double Bruhat cells, called ., in which all the Fomin-Zelevinsky minors become polynomials and the Poisson structure can be computed explicitly.
14#
發(fā)表于 2025-3-23 23:43:57 | 只看該作者
Distributions on Homogeneous Spaces and Applications,e conjecture that [.]⊙. = σ.⊙.σ.. We give some evidence for this conjecture, and prove special cases..Finally, we use the subbundles of ./. to give a geometric characterization of the .-homogeneous locus of any Schubert subvariety of ./..
15#
發(fā)表于 2025-3-24 02:27:17 | 只看該作者
Book 2018kshych).Nil-Hecke algebras and Whittaker .D.-modules (V. Ginzburg).Toeplitz operators (V. Guillemin, A. Uribe, Z. Wang).Kashiwara crystals (A. Joseph).Characters of highest weight modules (V. Kac, M. Wakimoto).Alcove polytopes (T. Lam, A. Postnikov).Representation theory of quantized Gieseker variet
16#
發(fā)表于 2025-3-24 08:13:38 | 只看該作者
17#
發(fā)表于 2025-3-24 10:50:42 | 只看該作者
18#
發(fā)表于 2025-3-24 15:51:34 | 只看該作者
V. Guillemin,A. Uribe,Z. Wangpanese urban systems, the strengthening of ties among cities and associated factors, and the expansion of socioeconomic exchanges with cities overseas, from a p978-90-481-5573-6978-94-017-2006-9Series ISSN 0924-5499 Series E-ISSN 2215-0072
19#
發(fā)表于 2025-3-24 19:34:20 | 只看該作者
Anthony Josephpanese urban systems, the strengthening of ties among cities and associated factors, and the expansion of socioeconomic exchanges with cities overseas, from a p978-90-481-5573-6978-94-017-2006-9Series ISSN 0924-5499 Series E-ISSN 2215-0072
20#
發(fā)表于 2025-3-25 01:14:41 | 只看該作者
https://doi.org/10.1007/978-3-030-02191-7Bertram Kostant; Transformation groups; Lie groups; Representation theory; Bert Kostant; Kac-Moody algebr
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 16:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
南澳县| 临城县| 清流县| 林西县| 上虞市| 夹江县| 辉南县| 富锦市| 奉贤区| 锦州市| 莱州市| 德安县| 开原市| 玛纳斯县| 磴口县| 新竹市| 柳江县| 永定县| 金寨县| 鄂托克旗| 乌苏市| 永顺县| 阿鲁科尔沁旗| 南乐县| 越西县| 林甸县| 墨脱县| 永康市| 永仁县| 萝北县| 瑞丽市| 修文县| 五大连池市| 万安县| 蓬溪县| 平泉县| 眉山市| 米林县| 三河市| 江西省| 苗栗县|