找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lie Groups; An Approach through Claudio Procesi Textbook 2007 Springer-Verlag New York 2007 Group representation.algebra.algebraic group.f

[復制鏈接]
樓主: risky-drinking
31#
發(fā)表于 2025-3-26 22:43:25 | 只看該作者
General Methods and Ideas,tematically since most of the interesting examples will appear only in the next chapters. The exposition here is quite far from the classical point of view since we are forced to establish the language in a rather thin general setting. Hopefully this will be repaid in the chapters in which we will treat the interesting results of Invariant Theory.
32#
發(fā)表于 2025-3-27 03:26:08 | 只看該作者
33#
發(fā)表于 2025-3-27 08:47:14 | 只看該作者
Binary Forms,here they all began, the old invariant theory of the 19. century in its most complete achievement: the theory of binary forms. We show a few of the many computational ideas which were developed at that time.
34#
發(fā)表于 2025-3-27 11:42:22 | 只看該作者
35#
發(fā)表于 2025-3-27 15:21:24 | 只看該作者
Symmetric Functions,p some of the very basic theorems on symmetric functions, in part as a way to give a look into 19. century invariant theory, but as well to establish some useful formulas which will show their full meaning only after developing the representation theory of the linear and symmetric groups.
36#
發(fā)表于 2025-3-27 20:48:58 | 只看該作者
37#
發(fā)表于 2025-3-27 23:44:53 | 只看該作者
38#
發(fā)表于 2025-3-28 04:43:46 | 只看該作者
Group Representations,s. We will use the necessary techniques from elementary algebraic geometry or functional analysis, referring to standard textbooks. One of the main points is a very tight relationship between a special class of algebraic groups, the reductive groups, and compact Lie groups. We plan to illustrate thi
39#
發(fā)表于 2025-3-28 08:32:54 | 只看該作者
40#
發(fā)表于 2025-3-28 11:12:20 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 03:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
当涂县| 资中县| 龙南县| 双峰县| 南汇区| 资中县| 信丰县| 名山县| 襄城县| 迁安市| 成安县| 康定县| 巢湖市| 雷山县| 玉山县| 宁晋县| 大连市| 青岛市| 平利县| 屯昌县| 扶余县| 惠州市| 行唐县| 揭西县| 南康市| 尉犁县| 神池县| 曲阜市| 锡林浩特市| 昭平县| 额敏县| 莆田市| 南丰县| 望城县| 呈贡县| 郁南县| 连云港市| 奉节县| 灵丘县| 阳江市| 梅河口市|