找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Level Set Methods and Dynamic Implicit Surfaces; Stanley Osher,Ronald Fedkiw Textbook 2003 Springer-Verlag New York, Inc. 2003 computer gr

[復(fù)制鏈接]
樓主: 萬圣節(jié)
21#
發(fā)表于 2025-3-25 07:07:49 | 只看該作者
22#
發(fā)表于 2025-3-25 10:07:26 | 只看該作者
23#
發(fā)表于 2025-3-25 12:20:02 | 只看該作者
Stanley Osher,Ronald Fedkiwtels etwas anderer Art sind, erscheint es angebracht, schon vorher gewisse Betrachtungen anzustellen, welche Sinn und Tatsachenwert des Mitgeteilten gegen gel?ufige Einw?nde schützen. Dergleichen w?re nicht n?tig, wenn es sich hier um Feststellungen einer hochentwickelten Erfahrungswissenschaft wie
24#
發(fā)表于 2025-3-25 18:19:02 | 只看該作者
25#
發(fā)表于 2025-3-25 23:32:50 | 只看該作者
Signed Distance Functionse boundary ?Ω. Little was said about . otherwise, except that smoothness is a desirable property especially in sampling the function or using numerical approximations. In this chapter we discuss signed distance functions, which are a subset of the implicit functions defined in the last chapter. We d
26#
發(fā)表于 2025-3-26 02:55:52 | 只看該作者
Motion in an Externally Generated Velocity Field 0. Given this velocity field V? ., we wish to move all the points on the surface with this velocity. The simplest way to do this is to solve the ordinary differential equation (ODE) . for every point V? on the front, i.e., for all V? with .(V?) = 0. This is the . formulation of the interface evolut
27#
發(fā)表于 2025-3-26 06:25:18 | 只看該作者
Motion Involving Mean Curvaturemotion for a self-generated velocity field (x? that depends directly on the level set function .. As an example, we consider motion by mean curvature where the interface moves in the normal direction with a velocity proportional to its curvature; i.e., V? = -.N?, where . > 0 is a constant and . is t
28#
發(fā)表于 2025-3-26 10:55:15 | 只看該作者
Hamilton-Jacobi Equations three spatial dimensions, we can write . as an expanded version of equation (5.1). Convection in an externally generated velocity field (equation (3.2)) is an example of a Hamilton-Jacobi equation where .(?..;? ·?.. The level set equation (equation (4.4)) is another example of a Hamilton-Jacobi equ
29#
發(fā)表于 2025-3-26 16:43:18 | 只看該作者
30#
發(fā)表于 2025-3-26 20:40:52 | 只看該作者
Extrapolation in the Normal Direction be used to propagate information in the direction of these characteristics. For example, . (8.1) is a Hamilton-Jacobi equation (in . that extrapolates . normal to the interface, i.e. so that . is constant on rays normal to the interface. Since ., we can solve this equation with the techniques prese
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 10:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
苏尼特左旗| 北流市| 松阳县| 惠来县| 沁阳市| 桑植县| 遂昌县| 凤翔县| 靖安县| 玛沁县| 宁波市| 乐昌市| 响水县| 泗水县| 新沂市| 五台县| 通许县| 哈巴河县| 揭西县| 大兴区| 祁阳县| 门源| 东光县| 阳谷县| 丽水市| 泸州市| 临西县| 游戏| 嘉荫县| 永城市| 德阳市| 宜川县| 同江市| 平陆县| 集安市| 扎赉特旗| 巩义市| 新蔡县| 沾益县| 芒康县| 汝南县|