找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Leitlinien für die Mund-, Kiefer- und Gesichtschirurgie; Alexander Kübler,Joachim Mühling Book 1998 Springer-Verlag Berlin Heidelberg 1998

[復(fù)制鏈接]
樓主: 開脫
21#
發(fā)表于 2025-3-25 04:10:18 | 只看該作者
Alexander Kübler,Joachim Mühlingresult about the pseudospectrum. Our goal is to study the spectrum of the following convection–diffusion operator .. defined on ..(Ω), where Ω is an unbounded open set of ?. and under a Dirichlet boundary condition. Our study is based upon pseudospectral theory because its tools are easier to handle
22#
發(fā)表于 2025-3-25 10:04:17 | 只看該作者
23#
發(fā)表于 2025-3-25 12:14:31 | 只看該作者
24#
發(fā)表于 2025-3-25 16:29:54 | 只看該作者
25#
發(fā)表于 2025-3-25 20:52:50 | 只看該作者
Alexander Kübler,Joachim Mühlingd by a large assortment of initial and boundary conditions. In certain circumstances, such models yield exact analytic solutions. When they do not, they are solved numerically by means of various approximation schemes. Whether analytic or numerical, these solutions share a common feature: they are c
26#
發(fā)表于 2025-3-26 01:08:37 | 只看該作者
27#
發(fā)表于 2025-3-26 07:11:18 | 只看該作者
28#
發(fā)表于 2025-3-26 11:55:39 | 只看該作者
Alexander Kübler,Joachim Mühlingproblems examined arise in real-life processes and phenomena, and the solution techniques range from theoretical integral equations to finite and boundary elements....Specific topics covered include spectral co978-0-8176-4671-4
29#
發(fā)表于 2025-3-26 15:05:28 | 只看該作者
30#
發(fā)表于 2025-3-26 20:11:34 | 只看該作者
Alexander Kübler,Joachim Mühlingrect numerical solution of the integral equation by collocation method. It is remarkable that even though solutions are close to trigonometric functions, they are not exactly equal to them. This fact is in contrast with the results of known constructive approaches to homogeneous Fredholm equations o
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 03:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新安县| 赣州市| 于田县| 新密市| 墨竹工卡县| 麻江县| 文昌市| 南召县| 阳高县| 同江市| 衡阳市| 仙桃市| 包头市| 谢通门县| 尚志市| 凤庆县| 肃宁县| 东明县| 军事| 余干县| 安塞县| 独山县| 北安市| 怀远县| 北碚区| 巴林左旗| 民县| 筠连县| 维西| 清流县| 桂林市| 虞城县| 无棣县| 鹤壁市| 枞阳县| 辽宁省| 乌什县| 阜新| 白山市| 普陀区| 文化|