找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lehrerprofessionalit?t und die Qualit?t von Mathematikunterricht; Quantitative Studien Michael Besser Book 2014 Springer Fachmedien Wiesbad

[復(fù)制鏈接]
樓主: IU421
11#
發(fā)表于 2025-3-23 12:13:45 | 只看該作者
12#
發(fā)表于 2025-3-23 17:34:00 | 只看該作者
Michael Besserdvent of Big Data in the healthcare arena, such that real-time data are now available to assist many clinical decisions. Real World Data (RWD) from hospital information system structured numerical data and unstructured text data, and it is imperative that phenotyping reproducibly extracts patients w
13#
發(fā)表于 2025-3-23 19:57:05 | 只看該作者
14#
發(fā)表于 2025-3-24 01:47:14 | 只看該作者
Michael Besserl in person is limited in Peru. The objective of the research was to evaluate the influence of a telehealth intervention on the knowledge of danger signs in pregnancy, childbirth and postpartum in pregnant women during the health emergency due to COVID-19. A quasi-experimental research was carried o
15#
發(fā)表于 2025-3-24 04:35:58 | 只看該作者
16#
發(fā)表于 2025-3-24 07:53:26 | 只看該作者
Michael Besserto help doctors and nurses save the life of a newborn whose respiratory circulation is unstable immediately after birth. Workshops are held throughout Japan consisting of lectures, scenario training, and review in support of this goal. In the NCPR workshop, it is recommended to review student activi
17#
發(fā)表于 2025-3-24 12:00:07 | 只看該作者
18#
發(fā)表于 2025-3-24 18:28:26 | 只看該作者
Michael Bessereting risk from stroke survival data, which enables to identify several types of events over the follow-up time for each patient affected by stroke. We explore the possibilities of recovery or death from stroke complications by exploring medical data of the neurology department. Our main interest is
19#
發(fā)表于 2025-3-24 20:41:46 | 只看該作者
Michael Besserment and prediction. Deep neural networks (DNNs) are appealing for survival analysis because of their non-linear nature. However, DNNs are often described as “black box” models because they are hard or practically impossible to explain. In this study, we propose an explainable deep network framework
20#
發(fā)表于 2025-3-25 01:45:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 18:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临城县| 中阳县| 蓬安县| 新邵县| 璧山县| 沙洋县| 西贡区| 大邑县| 富宁县| 泸溪县| 交城县| 兴业县| 宁城县| 若尔盖县| 大悟县| 九台市| 瓮安县| 太仆寺旗| 巢湖市| 罗城| 济宁市| 孟连| 丰县| 惠东县| 怀柔区| 肇州县| 炎陵县| 新龙县| 凤山市| 乐清市| 太白县| 玛纳斯县| 宁武县| 阳东县| 潜江市| 安陆市| 阿尔山市| 定安县| 汕头市| 沙湾县| 图片|