找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lehrbuch der Allgemeinen Pathologie und der Pathologischen Anatomie; Auf Grund des Ribber H. Hamperl (O. ?. Professor, Direktor) Textbook 1

[復(fù)制鏈接]
樓主: Jurisdiction
51#
發(fā)表于 2025-3-30 09:05:49 | 只看該作者
52#
發(fā)表于 2025-3-30 16:12:14 | 只看該作者
H. Hamperlntervala. For these problems, the performance criterion is described by an improper integral and it is possible that, when evaluated at a given admissible element, this criterion is unbounded. To cope with this divergence new optimality concepts; referred to here as "overtaking", "weakly overtaking"
53#
發(fā)表于 2025-3-30 18:58:04 | 只看該作者
54#
發(fā)表于 2025-3-30 20:44:53 | 只看該作者
55#
發(fā)表于 2025-3-31 04:24:16 | 只看該作者
H. Hamperlems to be that until the 1970‘s for the infinite interval problem all the theoretical results available required rather technical hypotheses and were applicable only to narrowly defined classes of problems. Thus scientists mainly offer~d and used special devices to construct the numerical solution a
56#
發(fā)表于 2025-3-31 08:28:48 | 只看該作者
57#
發(fā)表于 2025-3-31 11:59:47 | 只看該作者
H. Hamperl asked whether what is now called the “Krull-Schmidt Theorem” holds for artinian modules. A negative answer was published only in 1995 by Herbera, Levy, Vámos and the author [FHLV]. Second, we wanted to present the answer to a question posed by Warfield in 1975 [W2], namely, whether the Krull-Schmid
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 20:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
株洲市| 什邡市| 息烽县| 克拉玛依市| 隆子县| 万载县| 贵州省| 兴山县| 莱阳市| 西平县| 惠州市| 大厂| 贞丰县| 道孚县| 五莲县| 申扎县| 栖霞市| 湘西| 宜章县| 孝感市| 蒙山县| 于都县| 石楼县| 虎林市| 西乌| 霍城县| 兴安县| 澄江县| 九龙城区| 阿巴嘎旗| 酒泉市| 富顺县| 铜川市| 搜索| 方山县| 义马市| 余干县| 新蔡县| 蛟河市| 东乡县| 峨边|