找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lectures on Hyperbolic Geometry; Riccardo Benedetti,Carlo Petronio Textbook 1992 Springer-Verlag Berlin Heidelberg 1992 Cohomology.Flat Fi

[復(fù)制鏈接]
樓主: 撕成碎片
31#
發(fā)表于 2025-3-27 00:24:06 | 只看該作者
0172-5939 g results and also opened up new questions. The book concerns the geometry of manifolds and in particular hyperbolic manifolds; its aim is to provide an exposition of some fundamental results, and to be as far as possible self-contained, complete, detailed and unified. Since it starts from the basic
32#
發(fā)表于 2025-3-27 03:07:31 | 只看該作者
Textbook 1992and also opened up new questions. The book concerns the geometry of manifolds and in particular hyperbolic manifolds; its aim is to provide an exposition of some fundamental results, and to be as far as possible self-contained, complete, detailed and unified. Since it starts from the basics and it r
33#
發(fā)表于 2025-3-27 05:44:06 | 只看該作者
Hyperbolic Manifolds and the Compact Two-dimensional Case,omplete then it can be obtained as a quotient of hyperbolic space). Afterwards we shall consider the special case of compact surfaces and we shall give a complete classification of the hyperbolic structures on a surface of fixed genus (that is we shall give a parametrization of the so-called Teichmüller space).
34#
發(fā)表于 2025-3-27 12:08:18 | 只看該作者
The Space of Hyperbolic Manifolds and the Volume Function,t such an invariant is (topologically) complete for . = 2 in the compact case, and it may be proved that in the finite-volume case it becomes complete together with the number of cusp ends (“punctures”). Hence the problem of studying the volume function arises quite naturally: this is the aim of the present chapter.
35#
發(fā)表于 2025-3-27 16:33:36 | 只看該作者
36#
發(fā)表于 2025-3-27 19:55:17 | 只看該作者
37#
發(fā)表于 2025-3-27 23:23:23 | 只看該作者
Miodrag LovricThis is the first attempt in Statistics to engage the most recognized international authors Including the most prominent authors from many developing countries To write relatively brief papers on topi
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 02:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
五寨县| 理塘县| 吉水县| 宿迁市| 互助| 宁晋县| 金门县| 安乡县| 犍为县| 河津市| 天津市| 仙游县| 华安县| 迁安市| 肃南| 南平市| 石家庄市| 长乐市| 博湖县| 成都市| 招远市| 朝阳市| 宜君县| 长泰县| 濮阳市| 贵南县| 固始县| 泽普县| 普格县| 手机| 吴旗县| 黄山市| 卫辉市| 西贡区| 蚌埠市| 榆社县| 南开区| 曲沃县| 通道| 镇原县| 阿克苏市|