找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lectures on Discrete Geometry; Ji?í Matou?ek Textbook 2002 Springer-Verlag New York 2002 Discrete Geometry.Dimension.discrete geometry.geo

[復制鏈接]
樓主: Autonomous
31#
發(fā)表于 2025-3-26 22:03:02 | 只看該作者
32#
發(fā)表于 2025-3-27 04:22:47 | 只看該作者
Lower Envelopes, Already for segments in the plane, this problem has an unexpectedly subtle and difficult answer. The closely related combinatorial notion of . has proved to be a useful general tool, since the surprising phenomena encountered in the analysis of the lower envelope of segments are by no means rare in
33#
發(fā)表于 2025-3-27 09:07:03 | 只看該作者
Intersection Patterns of Convex Sets,one closely related but more difficult theorem in the current chapter. These more advanced relatives are selected, among the vast number of variations on the Helly-Radon-Carathéodory theme, because of their wide applicability and also because of nice techniques and tricks appearing in their proofs.
34#
發(fā)表于 2025-3-27 12:45:58 | 只看該作者
35#
發(fā)表于 2025-3-27 15:01:26 | 只看該作者
Two Applications of High-Dimensional Polytopes,ing geometric objects in arbitrary dimension, we could mostly rely on the intuition from the familiar dimensions 2 and 3. In the present chapter we can still use dimensions 2 and 3 to picture examples, but these tend to be rather trivial. For instance, in the first section we are going to prove thin
36#
發(fā)表于 2025-3-27 19:39:55 | 只看該作者
Volumes in High Dimension,miliar” bodies behave quite differently in high dimensions from what the 3-dimensional intuition suggests. Then we calculate that any convex polytope in the unit ball .. whose number of vertices is at most polynomial in . occupies only a tiny fraction of .. in terms of volume. This has interesting c
37#
發(fā)表于 2025-3-28 01:19:58 | 只看該作者
Measure Concentration and Almost Spherical Sections,s that if . ? ... is a set occupying at least half of the sphere, then almost all points of ... are quite close to ., at distance about .(..). Measure concentration is an extremely useful technical tool in high-dimensional geometry. From the point of view of probability theory, it provides tail esti
38#
發(fā)表于 2025-3-28 02:12:46 | 只看該作者
39#
發(fā)表于 2025-3-28 06:31:10 | 只看該作者
Ji?í Matou?ekeggs (2, 3). Nevertheless, the chronology of these events does not mean that nonhuman primate IVF cannot point the way to significant improvements in human IVF technology nor increase understanding of key areas in human reproduction. Rather, the indication is that IVF technology in nonhuman primates
40#
發(fā)表于 2025-3-28 14:08:18 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 03:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
聊城市| 治县。| 田阳县| 郓城县| 旬阳县| 左云县| 自治县| 丹东市| 武邑县| 库车县| 原阳县| 肇源县| 长子县| 巴彦县| 晋江市| 金川县| 华安县| 邮箱| 岳阳市| 教育| 康平县| 柘城县| 连平县| 双城市| 抚顺县| 昌乐县| 潼关县| 会昌县| 利川市| 承德市| 普兰店市| 县级市| 榆林市| 乌拉特中旗| 潮州市| 庐江县| 南充市| 丹巴县| 清新县| 长治县| 东源县|