找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lectures in Quantum Mechanics; A Two-Term Course Luigi E. Picasso Textbook 2016 Springer International Publishing Switzerland 2016 Angular

[復制鏈接]
樓主: architect
51#
發(fā)表于 2025-3-30 08:24:56 | 只看該作者
52#
發(fā)表于 2025-3-30 13:54:28 | 只看該作者
The Harmonic Oscillator,ergy for a one-dimensional oscillator. In this section we shall limit ourselves to obtain only some qualitative conditions on the energy levels of the oscillator, mainly with the purpose of giving to the reader the occasion to get acquainted with some techniques and concepts of quantum mechanics.
53#
發(fā)表于 2025-3-30 20:21:45 | 只看該作者
54#
發(fā)表于 2025-3-30 20:59:15 | 只看該作者
55#
發(fā)表于 2025-3-31 03:24:28 | 只看該作者
56#
發(fā)表于 2025-3-31 07:59:01 | 只看該作者
From Einstein to de Broglie,According to classical physics, the energy associated with a monochromatic electromagnetic wave is proportional to its intensity; the intensity can have any value above zero, and can therefore be varied with continuity. Furthermore this energy is distributed in space in a continuous way.
57#
發(fā)表于 2025-3-31 13:12:32 | 只看該作者
Representation Theory,Let ∣..〉, .?=?1, 2, … be an orthonormal basis of vectors.
58#
發(fā)表于 2025-3-31 16:27:08 | 只看該作者
,Schr?dinger Equation for One-Dimensional Systems,In this section we will be concerned with the relatively simple problem of determining the eigenvalues of the Hamiltonian of the free particle. We will discuss the one-dimensional case. Our system consists therefore of a particle constrained to move on a straight line.
59#
發(fā)表于 2025-3-31 18:51:45 | 只看該作者
One-Dimensional Systems,In Chap. . we have found the eigenvalues and the eigenvectors of the Hamiltonian of the one-dimensional harmonic oscillator. We want now to find the eigenfunctions .(.) = <. | .> of the Hamiltonian in the Schr?dinger representation.
60#
發(fā)表于 2025-4-1 00:42:08 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-12 12:22
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
刚察县| 宁明县| 来安县| 双柏县| 鸡东县| 永寿县| 辽源市| 内江市| 天等县| 阿拉善盟| 灯塔市| 台湾省| 涪陵区| 太仆寺旗| 曲靖市| 泰州市| 玛沁县| 鞍山市| 兴文县| 双城市| 略阳县| 崇明县| 丰都县| 河津市| 唐河县| 柞水县| 淳安县| 湘乡市| 永宁县| 深州市| 通城县| 呈贡县| 图木舒克市| 遂溪县| 仁化县| 钟山县| 玉树县| 普定县| 镇安县| 丹寨县| 北辰区|