找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Lectures in Quantum Mechanics; A Two-Term Course Luigi E. Picasso Textbook 2016 Springer International Publishing Switzerland 2016 Angular

[復(fù)制鏈接]
樓主: architect
51#
發(fā)表于 2025-3-30 08:24:56 | 只看該作者
52#
發(fā)表于 2025-3-30 13:54:28 | 只看該作者
The Harmonic Oscillator,ergy for a one-dimensional oscillator. In this section we shall limit ourselves to obtain only some qualitative conditions on the energy levels of the oscillator, mainly with the purpose of giving to the reader the occasion to get acquainted with some techniques and concepts of quantum mechanics.
53#
發(fā)表于 2025-3-30 20:21:45 | 只看該作者
54#
發(fā)表于 2025-3-30 20:59:15 | 只看該作者
55#
發(fā)表于 2025-3-31 03:24:28 | 只看該作者
56#
發(fā)表于 2025-3-31 07:59:01 | 只看該作者
From Einstein to de Broglie,According to classical physics, the energy associated with a monochromatic electromagnetic wave is proportional to its intensity; the intensity can have any value above zero, and can therefore be varied with continuity. Furthermore this energy is distributed in space in a continuous way.
57#
發(fā)表于 2025-3-31 13:12:32 | 只看該作者
Representation Theory,Let ∣..〉, .?=?1, 2, … be an orthonormal basis of vectors.
58#
發(fā)表于 2025-3-31 16:27:08 | 只看該作者
,Schr?dinger Equation for One-Dimensional Systems,In this section we will be concerned with the relatively simple problem of determining the eigenvalues of the Hamiltonian of the free particle. We will discuss the one-dimensional case. Our system consists therefore of a particle constrained to move on a straight line.
59#
發(fā)表于 2025-3-31 18:51:45 | 只看該作者
One-Dimensional Systems,In Chap. . we have found the eigenvalues and the eigenvectors of the Hamiltonian of the one-dimensional harmonic oscillator. We want now to find the eigenfunctions .(.) = <. | .> of the Hamiltonian in the Schr?dinger representation.
60#
發(fā)表于 2025-4-1 00:42:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 18:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
溆浦县| 高州市| 阿城市| 修文县| 永修县| 株洲县| 当阳市| 阳城县| 德惠市| 汾西县| 卢湾区| 静乐县| 仁布县| 金堂县| 龙井市| 周至县| 寿宁县| 阿坝| 板桥市| 长顺县| 开化县| 石嘴山市| 两当县| 淮阳县| 和静县| 桓台县| 遵义市| 南溪县| 襄汾县| 沅陵县| 琼中| 扬中市| 安化县| 独山县| 吉隆县| 汉源县| 特克斯县| 杭州市| 穆棱市| 金堂县| 乐都县|