找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lectures in Knot Theory; An Exploration of Co Józef H. Przytycki,Rhea Palak Bakshi,Deborah Weeks Textbook 2024 The Editor(s) (if applicable

[復(fù)制鏈接]
樓主: Malnutrition
11#
發(fā)表于 2025-3-23 10:40:10 | 只看該作者
12#
發(fā)表于 2025-3-23 17:26:17 | 只看該作者
History of Knot Theory from Gauss to Jones,stance called ether. At this time, creating a table of the elements was of significant importance to the scientific community, and this theory encouraged Tait to work on the knot classification problem. In this lecture, the origins of knot theory are examined, taking as a starting point the developm
13#
發(fā)表于 2025-3-23 21:03:09 | 只看該作者
From Fox 3-Coloring to the Yang-Baxter Operator and Its Homology,ion into quandle invariants. Here we also describe the Wirtinger’s and Dehn’s presentations of the fundamental group of the link complement and their relation to Fox colorings. The second part of the lecture describes how the idea of Fox colorings can develop into the sophisticated notion of Yang-Ba
14#
發(fā)表于 2025-3-23 23:25:42 | 只看該作者
Goeritz and Seifert Matrices,the checkerboard coloring of a link diagram and the second using an oriented surface bounded by a link. We discuss several link invariants coming from the matrix including the determinant, the signature, the Alexander-Conway polynomial, and the Tristram-Levine signature.
15#
發(fā)表于 2025-3-24 03:18:32 | 只看該作者
The Jones Polynomial and Kauffman Bracket Polynomial,s lecture, we describe basic properties of these polynomials including mysterious relations with Fox 3??coloring. We also discuss Montesinos-Nakanishi 3??move conjecture and its solution using the Burnside group of link. We end by discussing the Nakanishi 4-move conjecture, from 1979.
16#
發(fā)表于 2025-3-24 10:29:53 | 只看該作者
Variations on Catalan Connections and the Children Pairing Game,ith a simple interpretation of Catalan numbers with a topological flavor and presents a proof, motivated by the theory of skein modules, but which is very elementary and looks like a child’s game. We also discuss the lattice path and Dyck path interpretation of Catalan numbers (including Désiré Andr
17#
發(fā)表于 2025-3-24 11:56:29 | 只看該作者
18#
發(fā)表于 2025-3-24 17:34:55 | 只看該作者
The Kauffman Bracket Skein Module and Algebra of Surface I-Bundles,ter varieties, cluster algebras, and quantum Teichmüller spaces. In this lecture we explore some of these connections and discuss the structure of the Kauffman bracket skein algebras of several thickened surfaces.
19#
發(fā)表于 2025-3-24 21:36:42 | 只看該作者
20#
發(fā)表于 2025-3-24 23:24:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 08:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黎平县| 佛学| 鄂尔多斯市| 大邑县| 汾阳市| 镇平县| 松江区| 和硕县| 磐安县| 清水河县| 论坛| 上林县| 舒兰市| 延庆县| 克什克腾旗| 虎林市| 图片| 珠海市| 美姑县| 兰溪市| 桐乡市| 樟树市| 黑水县| 博乐市| 福州市| 怀集县| 台北市| 兴仁县| 汉沽区| 齐河县| 灌阳县| 荔波县| 兴义市| 彝良县| 无极县| 宁安市| 北碚区| 南涧| 顺昌县| 海原县| 永靖县|