找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lecture Notes on Geometry of Numbers; R. J. Hans-Gill,Madhu Raka,Ranjeet Sehmi Textbook 2024 The Editor(s) (if applicable) and The Author(

[復制鏈接]
樓主: 請回避
11#
發(fā)表于 2025-3-23 10:35:04 | 只看該作者
Packings, discrete set and introduce the concepts of general packing density, and lattice packing density of a set in .. We shall prove some results on packing of spheres and convex bodies and give some historical remarks on packings.
12#
發(fā)表于 2025-3-23 17:21:42 | 只看該作者
Homogeneous Problems, binary quadratic forms. We define Markoff spectrum for absolute value of indefinite binary quadratic forms and determine first three minima. We also consider one-sided problem for indefinite binary quadratic forms and show that here the spectrum is not isolated. Homogeneous minimum of product of three linear forms is also obtained.
13#
發(fā)表于 2025-3-23 19:21:01 | 只看該作者
https://doi.org/10.1007/978-981-99-9602-5lattices; convex sets; Minkowski fundamental theorem; critical determinants; Minkowski second inequality
14#
發(fā)表于 2025-3-24 01:53:04 | 只看該作者
15#
發(fā)表于 2025-3-24 04:43:18 | 只看該作者
16#
發(fā)表于 2025-3-24 06:44:40 | 只看該作者
Coverings,The concept of covering is dual to that of packing. In this chapter, we shall define lattice covering, general covering, covering density, thinnest covering density, and their arithmetical interpretation. We prove F.ry’s result for obtaining best lattice covering density of closed convex domains in . and give some historical remarks on coverings.
17#
發(fā)表于 2025-3-24 13:31:07 | 只看該作者
18#
發(fā)表于 2025-3-24 16:44:59 | 只看該作者
19#
發(fā)表于 2025-3-24 19:09:35 | 只看該作者
20#
發(fā)表于 2025-3-25 02:41:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 08:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
尼勒克县| 遂川县| 双牌县| 疏勒县| 凤城市| 普格县| 离岛区| 都江堰市| 上饶市| 廊坊市| 吴川市| 永顺县| 扶余县| 瑞昌市| 双江| 五莲县| 肃南| 阜阳市| 亚东县| 蓝山县| 怀来县| 保靖县| 剑河县| 太仓市| 潼南县| 贵德县| 明光市| 红河县| 邢台县| 凌源市| 漳州市| 安宁市| 游戏| 侯马市| 安阳市| 潜山县| 阿拉善左旗| 博乐市| 塘沽区| 金华市| 平湖市|