找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Learning in the Age of Digital Reason; Petar Jandric Book 2017 SensePublishers-Rotterdam, The Netherlands 2017 Digital ephemera.Digital re

[復(fù)制鏈接]
樓主: 寓言
11#
發(fā)表于 2025-3-23 11:10:07 | 只看該作者
12#
發(fā)表于 2025-3-23 16:12:47 | 只看該作者
Petar Jandricthe minimal number of generators of modules and ideals. The notion of a module over a ring R is a generalization of that of a vector space over a field k. The axioms are identical. But whereas every vector space possesses a basis, a module need not always have one. Modules possessing a basis are cal
13#
發(fā)表于 2025-3-23 21:48:25 | 只看該作者
14#
發(fā)表于 2025-3-23 22:50:08 | 只看該作者
the minimal number of generators of modules and ideals. The notion of a module over a ring R is a generalization of that of a vector space over a field k. The axioms are identical. But whereas every vector space possesses a basis, a module need not always have one. Modules possessing a basis are cal
15#
發(fā)表于 2025-3-24 03:40:08 | 只看該作者
Petar Jandricted to the study of projective modules and the minimal number of generators of modules and ideals. The notion of a module over a ring R is a generalization of that of a vector space over a field k. The axioms are identical. But whereas every vector space possesses a basis, a module need not always h
16#
發(fā)表于 2025-3-24 09:31:48 | 只看該作者
Petar Jandricted to the study of projective modules and the minimal number of generators of modules and ideals. The notion of a module over a ring R is a generalization of that of a vector space over a field k. The axioms are identical. But whereas every vector space possesses a basis, a module need not always h
17#
發(fā)表于 2025-3-24 13:28:32 | 只看該作者
Petar Jandricthe minimal number of generators of modules and ideals. The notion of a module over a ring R is a generalization of that of a vector space over a field k. The axioms are identical. But whereas every vector space possesses a basis, a module need not always have one. Modules possessing a basis are cal
18#
發(fā)表于 2025-3-24 18:44:38 | 只看該作者
19#
發(fā)表于 2025-3-24 21:35:39 | 只看該作者
20#
發(fā)表于 2025-3-25 03:13:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 17:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武川县| 太和县| 佛山市| 新龙县| 德州市| 芦溪县| 兰溪市| 清水河县| 无锡市| 阜宁县| 牙克石市| 临汾市| 陇南市| 南澳县| 四子王旗| 阳新县| 秦皇岛市| 西安市| 池州市| 嫩江县| 犍为县| 城市| 金阳县| 休宁县| 犍为县| 鹤庆县| 晋江市| 淮安市| 民丰县| 临澧县| 马龙县| 静宁县| 偃师市| 罗江县| 西吉县| 文水县| 固始县| 内江市| 泉州市| 泰州市| 涿鹿县|