找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Learning and Intelligent Optimization; 12th International C Roberto Battiti,Mauro Brunato,Panos M. Pardalos Conference proceedings 2019 Spr

[復(fù)制鏈接]
樓主: Clientele
31#
發(fā)表于 2025-3-26 22:54:46 | 只看該作者
32#
發(fā)表于 2025-3-27 03:30:24 | 只看該作者
Creating a Multi-iterative-Priority-Rule for the Job Shop Scheduling Problem with Focus on Tardy Jol paths is used to solve the static problem as a benchmark. The results show that all types provide better results than classical PR and that with and without time limit the types from best to worst are: MIPR, MPR, IPR, and PR. The gaps to the metaheuristic are also reported.
33#
發(fā)表于 2025-3-27 09:14:16 | 只看該作者
34#
發(fā)表于 2025-3-27 12:08:53 | 只看該作者
How , Can Be Helpful to Iteratively Compute Negative Curvature Directions,can enhance the performance of the CG, allowing the computation of negative curvature directions, too. The overall method in our proposal significantly generalizes the theory proposed for [.] and [.], and straightforwardly allows the use of a CG-based method on indefinite Newton’s equations.
35#
發(fā)表于 2025-3-27 15:24:19 | 只看該作者
Solving Scalarized Subproblems within Evolutionary Algorithms for Multi-criteria Shortest Path Probof problem instances shows the effectiveness of the approach in comparison to a well-known mutation operator in terms of convergence speed and approximation quality. In addition, we glance at the neighbourhood structure and similarity of obtained Pareto-optimal solutions and derive promising directions for future work.
36#
發(fā)表于 2025-3-27 19:00:01 | 只看該作者
0302-9743 mization, machine learning, and artificial intelligence. Special focus is given to advanced ideas, technologies, methods, and applications in optimization and machine learning..978-3-030-05347-5978-3-030-05348-2Series ISSN 0302-9743 Series E-ISSN 1611-3349
37#
發(fā)表于 2025-3-28 00:55:33 | 只看該作者
38#
發(fā)表于 2025-3-28 04:13:28 | 只看該作者
39#
發(fā)表于 2025-3-28 07:14:03 | 只看該作者
An Effective Heuristic for a Single-Machine Scheduling Problem with Family Setups and Resource Consr an extensive computational experience on benchmark of instances from the literature and randomly generated in this work. Results show that the developed heuristic significantly outperforms a state-of-the-art heuristic in terms of solution quality.
40#
發(fā)表于 2025-3-28 10:56:17 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 18:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
湖口县| 岑巩县| 蒙自县| 齐河县| 哈尔滨市| 大庆市| 金沙县| 忻州市| 安平县| 海城市| 江北区| 泸西县| 远安县| 中方县| 温州市| 浏阳市| 浦东新区| 义乌市| 宜兰县| 南华县| 自贡市| 崇义县| 南澳县| 江达县| 堆龙德庆县| 黄大仙区| 邓州市| 兴城市| 勃利县| 定西市| 新龙县| 武川县| 佛山市| 密山市| 临沭县| 桦甸市| 侯马市| 唐海县| 南京市| 维西| 青浦区|