找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lazy Learning; David W. Aha Book 1997 Springer Science+Business Media Dordrecht 1997 algorithms.case-based reasoning.classification.cognit

[復(fù)制鏈接]
樓主: 技巧
41#
發(fā)表于 2025-3-28 17:52:45 | 只看該作者
Editorial,er algorithms during training, they typically have greater storage requirements and often have higher computational costs when answering requests. For the first time, this distinction, and its implications, are the focus of a (quintuple) special issue; . has brought together 14 articles that review
42#
發(fā)表于 2025-3-28 22:20:45 | 只看該作者
Voting over Multiple Condensed Nearest Neighbors,te size, we use bootstrapping to generate smaller training sets over which we train the voters. When the training set is large, we partition it into smaller, mutually exclusive subsets and then train the voters. Simulation results on six datasets are reported with good results. We give a review of m
43#
發(fā)表于 2025-3-29 00:13:42 | 只看該作者
Tolerating Concept and Sampling Shift in Lazy Learning Using Prediction Error Context Switching,-learning algorithms to have good classification accuracy in conditions having a time-varying function mapping and input sampling distributions, while still maintaining their asymptotic classification accuracy in static tasks. PECS works by selecting and re-activating previously stored instances bas
44#
發(fā)表于 2025-3-29 03:37:48 | 只看該作者
The Racing Algorithm: Model Selection for Lazy Learners,sing leave-one-out cross validation is efficient. We use racing to select among various lazy learning algorithms and to find relevant features in applications ranging from robot juggling to lesion detection . MRI scans.
45#
發(fā)表于 2025-3-29 10:46:04 | 只看該作者
46#
發(fā)表于 2025-3-29 15:05:22 | 只看該作者
47#
發(fā)表于 2025-3-29 18:34:46 | 只看該作者
Lazy Acquisition of Place Knowledge,Previous researchers have studied evidence grids and place learning, but they have not combined these two powerful concepts, nor have they used systematic experimentation to evaluate their methods’ abilities.
48#
發(fā)表于 2025-3-29 19:43:51 | 只看該作者
49#
發(fā)表于 2025-3-30 01:40:49 | 只看該作者
50#
發(fā)表于 2025-3-30 05:01:44 | 只看該作者
IGTree: Using Trees for Compression and Classification in Lazy Learning Algorithms,dicate that IGTree is a useful algorithm for problems characterized by the availability of a large number of training instances described by symbolic features with sufficiently differing information gain values.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 08:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
榆树市| 晋中市| 贵定县| 公主岭市| 沈阳市| 勐海县| 镇平县| 呼玛县| 临潭县| 阳城县| 志丹县| 辽宁省| 同德县| 万年县| 沙湾县| 苍山县| 灵台县| 顺昌县| 固原市| 安远县| 铜川市| 永嘉县| 安塞县| 台北市| 科技| 高雄县| 井研县| 翁牛特旗| 土默特右旗| 淳安县| 千阳县| 平乡县| 尤溪县| 胶州市| 南溪县| 营口市| 冷水江市| 泰顺县| 遂川县| 济宁市| 洪泽县|