找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lattices and Codes; A Course Partially B Wolfgang Ebeling Textbook 2013Latest edition Springer Fachmedien Wiesbaden 2013 Leech lattice.modu

[復(fù)制鏈接]
樓主: supplementary
21#
發(fā)表于 2025-3-25 05:38:05 | 只看該作者
22#
發(fā)表于 2025-3-25 10:14:59 | 只看該作者
23#
發(fā)表于 2025-3-25 14:30:56 | 只看該作者
24#
發(fā)表于 2025-3-25 17:06:53 | 只看該作者
Wolfgang EbelingMaster course on the relationship between coding theory and the.theory of integral lattices.Linking classical mathematics to modern aspects in the design of codes.With many examples and connections to
25#
發(fā)表于 2025-3-25 20:43:44 | 只看該作者
Advanced Lectures in Mathematicshttp://image.papertrans.cn/l/image/581954.jpg
26#
發(fā)表于 2025-3-26 01:05:50 | 只看該作者
Lattices and Codes,In this section we introduce the basic concept of a lattice in Rn. For references see [81],[61], [9], [45], and [72].
27#
發(fā)表于 2025-3-26 05:12:45 | 只看該作者
28#
發(fā)表于 2025-3-26 11:01:34 | 只看該作者
Even Unimodular Lattices,In this section we study modified theta functions, namely theta series with spherical coefficients, and their behavior under transformations of the modular group. The results of this section are due to E. Hecke [32] and B. Schoeneberg [78, 79]. Our presentation follows [71, Chap. VI] and [83].
29#
發(fā)表于 2025-3-26 13:36:09 | 只看該作者
The Leech Lattice,This chapter is devoted to this important lattice. We shall first show the uniqueness of this lattice. We shall prove the following theorem.
30#
發(fā)表于 2025-3-26 19:12:19 | 只看該作者
9樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 09:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
徐水县| 子洲县| 淳安县| 那曲县| 太白县| 仁寿县| 湖南省| 禹州市| 张家口市| 广丰县| 彭山县| 临沧市| 嘉黎县| 安新县| 白玉县| 图片| 沙洋县| 玉屏| 渭南市| 淮南市| 大洼县| 福州市| 南召县| 定陶县| 惠州市| 左贡县| 井研县| 平果县| 青阳县| 古田县| 翁牛特旗| 牙克石市| 香港| 益阳市| 张家川| 阿尔山市| 城固县| 始兴县| 塔城市| 台北市| 漯河市|