找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Lattice Theory: Special Topics and Applications; Volume 2 George Gr?tzer,Friedrich Wehrung Book 2016 Springer International Publishing Swit

[復(fù)制鏈接]
樓主: 審美家
21#
發(fā)表于 2025-3-25 04:07:56 | 只看該作者
22#
發(fā)表于 2025-3-25 10:56:25 | 只看該作者
Varieties of Lattices,t is impossible to give a comprehensive account. Often we only cite recent or survey papers, which themselves have many more references. We would like to apologize in advance for any errors, omissions, or miscrediting of results.
23#
發(fā)表于 2025-3-25 14:54:56 | 只看該作者
24#
發(fā)表于 2025-3-25 18:03:48 | 只看該作者
Bases of Closure Systems,nical forms of representations of a closure system by implications. Most of the results are inspired by the structure of the closure lattice and its properties. In particular, we will be concerned with effective representations of closure systems whose closure lattices are join-semidistributive, lower bounded or locally distributive.
25#
發(fā)表于 2025-3-25 23:48:24 | 只看該作者
Generalizations of the Permutohedron,356]), multinomial lattices (also called lattices of multipermutations, see Bennett and Birkhoff [55], Flath [154], Santocanale [393]), lattices of generalized permutations (Gross [210], Krob . [288], Boulier . [82]).
26#
發(fā)表于 2025-3-26 00:17:22 | 只看該作者
Free and Finitely Presented Lattices,Since free lattices are covered in Section 1-5 of LTF and in great detail in our book with Je?ek [170], in this chapter we present the theory of finitely presented lattices including some new results, and then specialize to the case of free lattices. The authors wish to thank Alejandro Guillen for several helpful suggestions.
27#
發(fā)表于 2025-3-26 07:52:34 | 只看該作者
28#
發(fā)表于 2025-3-26 09:49:21 | 只看該作者
29#
發(fā)表于 2025-3-26 15:51:36 | 只看該作者
30#
發(fā)表于 2025-3-26 20:30:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 16:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永福县| 长汀县| 金溪县| 南京市| 安阳县| 文水县| 桦甸市| 庐江县| 突泉县| 来安县| 五台县| 闸北区| 奉新县| 洛阳市| 固安县| 北碚区| 柘城县| 漠河县| 尼玛县| 新沂市| 邳州市| 黄冈市| 板桥市| 友谊县| 鹤山市| 师宗县| 万载县| 望奎县| 根河市| 九江县| 大竹县| 紫阳县| 西安市| 延庆县| 宝应县| 桓仁| 枞阳县| 松江区| 杭锦后旗| 阳江市| 天峨县|