找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Lattice Rules; Numerical Integratio Josef Dick,Peter Kritzer,Friedrich Pillichshammer Book 2022 The Editor(s) (if applicable) and The Autho

[復(fù)制鏈接]
查看: 13426|回復(fù): 52
樓主
發(fā)表于 2025-3-21 20:07:23 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Lattice Rules
副標(biāo)題Numerical Integratio
編輯Josef Dick,Peter Kritzer,Friedrich Pillichshammer
視頻videohttp://file.papertrans.cn/582/581943/581943.mp4
概述Accessible introduction for undergraduate students in mathematics or computer science.Discusses practical applications.Explanations of the basic concepts and current methods used in research
叢書名稱Springer Series in Computational Mathematics
圖書封面Titlebook: Lattice Rules; Numerical Integratio Josef Dick,Peter Kritzer,Friedrich Pillichshammer Book 2022 The Editor(s) (if applicable) and The Autho
描述Lattice rules are a powerful and popular form of quasi-Monte Carlo rules based on multidimensional integration lattices. This book provides a comprehensive treatment of the subject with detailed explanations of the basic concepts and the current methods used in research. This comprises, for example, error analysis in reproducing kernel Hilbert spaces, fast component-by-component constructions, the curse of dimensionality and tractability, weighted integration and approximation problems, and applications of lattice rules..
出版日期Book 2022
關(guān)鍵詞lattice rules; numerical integration; quasi Monte Carlo methods; function approximation; worst-case erro
版次1
doihttps://doi.org/10.1007/978-3-031-09951-9
isbn_softcover978-3-031-09953-3
isbn_ebook978-3-031-09951-9Series ISSN 0179-3632 Series E-ISSN 2198-3712
issn_series 0179-3632
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Lattice Rules影響因子(影響力)




書目名稱Lattice Rules影響因子(影響力)學(xué)科排名




書目名稱Lattice Rules網(wǎng)絡(luò)公開度




書目名稱Lattice Rules網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Lattice Rules被引頻次




書目名稱Lattice Rules被引頻次學(xué)科排名




書目名稱Lattice Rules年度引用




書目名稱Lattice Rules年度引用學(xué)科排名




書目名稱Lattice Rules讀者反饋




書目名稱Lattice Rules讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:21:51 | 只看該作者
Lattice Rules978-3-031-09951-9Series ISSN 0179-3632 Series E-ISSN 2198-3712
板凳
發(fā)表于 2025-3-22 00:28:21 | 只看該作者
地板
發(fā)表于 2025-3-22 07:58:25 | 只看該作者
Extensible Lattice Point Sets,However, the situation is different if we ask for an extension with respect to the number of points, .. Extending the number of points may be of practical relevance if one wants to improve the accuracy of approximation of an integral by increasing the number of integration nodes without having to discard previously computed function values.
5#
發(fā)表于 2025-3-22 12:30:50 | 只看該作者
6#
發(fā)表于 2025-3-22 14:02:28 | 只看該作者
Integration with Respect to Probability Measures,In general, one can apply a transformation to obtain an integral over the unit cube. However, this changes the integrand, and often certain smoothness assumptions are not satisfied anymore by the transformed integrand. Using this approach one can obtain bounds on the integration error for a number of important choices of probability densities.
7#
發(fā)表于 2025-3-22 17:28:18 | 只看該作者
8#
發(fā)表于 2025-3-22 21:57:13 | 只看該作者
9#
發(fā)表于 2025-3-23 03:21:35 | 只看該作者
10#
發(fā)表于 2025-3-23 09:36:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 12:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
溧阳市| 自治县| 江川县| 乌审旗| 甘谷县| 壶关县| 庆城县| 阳谷县| 温州市| 阿克苏市| 石嘴山市| 福建省| 福泉市| 察隅县| 万盛区| 武宁县| 景东| 淳安县| 元谋县| 桃江县| 天峨县| 拜城县| 宜城市| 十堰市| 开封县| 班玛县| 深水埗区| 夏津县| 拉孜县| 喀喇沁旗| 石城县| 平果县| 朔州市| 凤阳县| 萨嘎县| 高州市| 通辽市| 治县。| 汶上县| 东丽区| 新巴尔虎右旗|